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FOREWORD 

Aliaa Burqan 
Conference Chairman 
Zarqa University 

 

I am happy to introduce to you the 6th International Arab Conference on Mathematics 
and Computations, IACMC 2019. This conference is among a series of international 
conferences held and 

meet, discuss, to share and explore ideas that improve their research. On the other hand, 
these conferences will also provide a good opportunity to encourage young researchers, 

tract with each other and to explore possibilities for future collaborative work. 

This book contains the short papers  of IACMC 2019 which is held in Zarqa University 
on April 24-26, 2019. This sixth edition contains a large number of research topics and 
applications in both pure and applied mathematics in 
which are the Furthermore, the program is 
enriched by several keynote lectures delivered by well-known experts in their areas of 
Mathematics. 

IACMC 2019 received 120 abstract submissions from 20 countries. The accepted full-
papers went through an evaluation method: each paper was reviewed by two reviewers 

Authors of some selected papers, based on the reviewer's evaluations and on the oral 
presentations, are invited to submit extended versions of their papers for a book which 
will be published by Springer  
 

The program for this conference required the dedicated effort of many people. Firstly, 
we must th
Research Support Fund. Secondly, we thank the invited speakers for their invaluable 
contributions and the authors, whose research efforts are herewith recorded. We also 
give our thanks to the reviewers for their diligent and professional reviewing. Last but 
not least, a special word of thanks is due to those who spent much of their time to make 
the success of this conference: to all members of the Local and Organizing Committees 
for their super job  

We look forward to welcoming and sharing this conference with you. Wishing you all 
an exciting conference and an unforgettable stay in Jordan and hoping to meet you again 
for the 7th IACMC  
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ABSTRACT  

Centrale to the entire discipline of mathematics is the concept of space that has heatedly received 
considerable attention in the last few decades. B-metric spaces, in particular is a major area of 
interesting within types of spaces. In essence, the present study seeks at extreme the one 
proceding a clear insight of the concept b metric and establishing its main structure. At the other 
extreme, it attempts to introduce a new class principle contraction to prove kannan and 
chatterjea fixed point theorems. We also give in the end of paper some examples to illustrate 
the given results 

Keywords: B-metric space; Fixed point; Cauchy sequence. 

 

1. INTRODUCTION 

The metric spaces are the well known space and very important tool for all branches of 
mathematics. The first important result in the theory of  fixed point about contractive mapping 
is Banach theorem.  
A mapping , where (X,d) is a metric space, wich is a contraction if there exists k in 
[0,1) such that for all x,y in X,  

 
 Additionally, there are numerous generalization of usual metric spaces.We refer the readers 
to [1],[6],[8,9,10]. One of them is b-metric space, b-metric spaces are one of the among 
spaces which generalize the classical metric.Czerwik [8] is the first presented a generalization 
of banach fixed point theorem in b-metric spaces. 
This recherches introduced some classes of contractive principle and proved some theorems 
in b-metric spaces by imposing some additional conditions. 
In the present paper, we extend an -metric 
spaces with new contractive principle. At the end of paper, we introduce an example to 
illustrate our results. 
 

2. PRELIMINARIES 

B-metric spaces could be defined by disparate scholars as follow : 
 
Definition 2.1.  [2] Let X be a nonempty set and  A function d is called a 
b-metric with constant  if 

b(0)  d(x, y) = 0 if and only if x = y; 
b(1)  d(x, y) = d(y, x) for all x, y  X; 

 for all x, y, z  X. 
In this case, the pair (X, d) is called a b-metric space. 
 
Obviously, a b-metric space with base s = 1 is a metric space. Moreover, we can consider 
every metric space as a b-metric space but contrary is not necessary true. A well-known 
example of b-metric spaces are given below  
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Example 2.2 [4] Let X ={0,1, 2} and d(0,2) = d(2, 0) = m>2,  
d(0,1) = d(1, 2) =d(1,0)=d(2,1)=1, 
and d(0, 0) = d(1, 1) = d(2, 2) = 0. Then  for all x,y,z in X 
 
Definition 2.3.[3] Let {xn} be a sequence in a b-metric space (X, d). 
(1) A sequence {xn} is called convergent if and only if there is x  X such that d(xn  
when  
(2) {xn} is a Cauchy sequence if and only if d(xn, xm , when  
 
Definition 2.4.[3] The b-metric space is complete if every Cauchy sequence convergent. 
 
Lemma 2.5. Let {xn} be a sequence in a b-metric type space (X,d) such that 

d(xn,xn+1 n,x ), 
for some , and each  Then {xn} is a Cauchy sequence in (X,d). 

3. MAIN RESULT 

Throughout this section, we afford two fixed point theorems in b-metric spaces. The first one theorem 
b-metric spaces. 

 
Theorem 3.1. Let (X, d) be a complete b-metric space with constant . 
If and 

d(Tx,Ty)  a(d(x,Tx) + d(y,Ty)) + bd(x,y)           (1) 
for all x, y in  X , then there is a unique fixed point on T 
 
Proof. Let x in X and x  be a sequence in X defined as following  

Txn=xn+1  
By using (1), 

d(xn,xn+1)  a(d(xn,xn+1) + d(xn-1,xn)) + bd(xn, xn-1) 
             ad(xn,xn+1) +a d(xn-1,xn) + bd(xn, xn-1). 

we get  

d(xn,xn+1 -a) d(xn-1,xn). 

By repeating this procedure, we get 

d(xn,xn+1 -a)]n d(x1,x0). 

Using (a+b/1-a)<1, we get, T is a contraction mapping. 

Now, we show that {xn} is a Cauchy sequence in X. Let m, n > 0 with m > n,  
d(xn,xm

nd(x1,x0)                            
for each n =0,1,2,3,... , and  

-a) <1 
Then the sequence {xn} is a Cauchy sequence in X. In view of completeness of X; we consider 
that {xn} convergent to x* in X. 
 
4. UNIQUENESS OF FIXED POINT: 

Finally, we have to show that the fixed point is unique. Assume that is another fixed point of 
 This case is a contradiction with condition (1). So the fixed point is unique. This 

completes the proof  
Our next theorem about Chatterjea type fixed point theorem in b-metric spaces with new  
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contractive condition.
 
Theorem 3.2. Let (X, d) be a complete b-metric space with constant .  
If  sa+b<1 and 

d(Tx,Ty)  a(d(y,Tx) + d(x,Ty)) + bd(x,y)          (2) 
for all x, y in  X , then there is a unique fixed point on S  
 
Proof. Let x in X and {xn} be a sequence in X defined as following  

Txn=xn+1  
By using (2), 

d(xn,xn+1)  a(d(xn-1,Sxn) + d(xn,Sxn-1)) + bd(xn, xn-1) 
ad(xn-1,xn+1) + bd(xn, xn-1) 

               asd(xn-1,xn) + asd(xn+1,xn) + bd(xn, xn-1), 

This implies that 

d(xn,xn+1 -sa) d(xn-1,xn). 

So 

d(xn,xn+1 -sa)]n d(x1,x0). 

By condition 2sa+b<1. Thus T is a contraction mapping. 

Now, we show that {xn} is a Cauchy sequence in X. Let m, n > 0 with m > n,  
d(xn,xm

nd(x1,x0)                            
for each n =0,1,2,3,... , and  

-as)<1 
Then the sequence {xn } is a Cauchy sequence in X by completeness of X; we consider that  
{xn} convergent to x* in X. 

5. UNIQUENESS OF FIXED POINT: 
The proof of uniqueness is similar to the proof of uniqueness in theorem 3.1.  
 
Remarks 3.3 If we take s= 1, b=0 and S=f ,Theorem 3.1 reduce to Kannan theorem [7] and 
if we take s= 1, b=0 and S=f , Theorem 3.2 would be the Chatterjea theorem [5]. 
 
Example 3.4 Let X={0,1,2} and  be defined as follows: 
d(0,0)=d(1,1)=d(2,2)=0 , d(0,1)=d(1,0)=d(0,2)=d(2,0)=2/7, d(1,2)=d(2,1)=5/7. It is easy to 
check that (X,d) is a b-metric space with s=4/3 and it is not a metric space (usual). 
Define  by T0=0, T1=2, T2=0. If we take a=1/5 and b=1/2 in theorem 3.1, thus the 
inequality (1) holds for all x,y in X. 
 
 
ACKNOWLEDGEMENT 
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committee for finding this study and he would like to escpress sincere thanks. 
 

REFERENCES  

-valued quasi- 
contractions in b-metric spaces. Fixed Point Theory and Applications 2012 2012:88. 
[2] I.A.Bakhtin, The contraction mapping principle in almost metric spaces, Funct Anal., 30,Unianowsk, Gos. Ped. 
Inst., (1989), 26-37. 
[3] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, 



4 
 

Int. J. Mod. Math., 4 (2009), 285-301. 
[4] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metric, studia, univ 
Babes, Bolya: Math, Liv(3) (2009), 1-14. 
[5] Chatterjea SK. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972;25(6):727-730. 
[6] T Hamaizia, PP Murthy, Common Fixed Point Theorems in Relatively Intuitionistic Fuzzy Metric Spaces, Gazi 
University Journal of Science 30 (1), 355-362 
[7] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968) 71-76.. 
[8] Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric spaces, AttiSem Math Fis 
Univ Modena. 46(2), 263-276 (1998) 
[9] M. Kir and H. Kiziltunc,On Some Well Known Fixed Point Theorems in b-Metric Spaces,Turkish Journal of 
Analysis and Number Theory, 2013, Vol. 1, No. 1, 13-16 
[10] Shatanawi W, Al-Rawashdeh A, Aydi H, Nashine HK. On a fixed point for generalizaed contractions 
in generalized metric spaces. Abstract and Applied Analysis; 2012. Article ID 246085: 1-13. 

 
  



5 
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ABSTRACT  

Many methods related to stratified ranked set sampling are suggested for estimating the 
population mean. Some of these methods are stratified quartile ranked set sample (SQRSS), 
stratified percentile ranked set sample (SPRSS), stratified median ranked set sample (SMRSS) 
and stratified extreme ranked set sample (SERSS). These estimators are compared to stratified 
simple random sample (SSRS) and stratified ranked set sample (SRSS). It is found that all 
estimators are unbiased estimators of the population mean and they are more efficient than their 
counterparts using SSRS and SRSS. A simulation study is considered to compare the efficiency 
of the above estimators. 
 

Keywords: Ranked set sampling;Stratified;Quartile;Median; Percentile; Extreme; Efficiency. 

1. INTRODUCTION 

McIntyre (1952), considered the mean of n units based on a ranked set sampling (RSS) to 
estimate the population mean. Takahasi and Wakimoto (1968) provided the mathematical 
theory for RSS. Dell and Clutter (1972) showed that the mean of the RSS is an unbiased 
estimator of the population mean, whether or not there are errors in ranking. Muttlak (1997) 
suggested median ranked set sampling (MRSS) to estimate the population mean. Muttlak 
(2003) considered quartile ranked set sampling (QRSS) to estimate the population mean,he 
showed that QRSS reduces the errors in ranking when compared to RSS. Muttlak (2003b) 
suggested percentile ranked set sampling (PRSS) to estimate the population mean and he 
showed using PRSS procedure will reduce the errors in ranking comparing to RSS since we 
only select and measure the pth or the qth percentile of the sample. K. Ibrahim, Al-Omari and 
Syam (2010) estimated the population mean using SMRSS, then in (2012) they estimated the 
population mean using SQRSS and SERSS.  
The aim of this paper is to compare some suggested estimators for the population mean as 
stratified quartile ranked set sample (SQRSS), stratified percentile ranked set sample (SPRSS), 
stratified median ranked set sample (SMRSS) and stratified extreme ranked set sample 
(SERSS). These estimators are more efficient than those obtained based on stratified simple 
random sample (SSRS) and stratified ranked set sampling (SRSS). 

2. SAMPLING METHODS 

2.1.  Ranked set sampling 

McIntyre (1952) first suggested the ranked set sampling (RSS) method. The RSS involves 
selection of n random samples of size n units each from the population and ranking of the units 
in each sample with respect to the variable of interest. An actual measurement is taken for the 
unit with the smallest rank from the first sample. From the second sample, an actual 
measurement is taken for the unit with the second smallest rank, and the procedure is continued 
until the unit with the largest rank from the nth sample is chosen for actual measurement.  

2.2. MEDIAN RANKED SET SAMPLING 

The MRSS procedure as proposed by Muttlak (1997) depends on selecting n random samples 
of size n units from the population and ranking the units within each sample with respect to a 
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variable of interest. If the sample size n is odd then from each sample select for the measurement 

the  smallest rank, which means the median of the sample. If the sample size n is 

even then select for the measurement from the first  samples the   smallest rank and 

from the second  samples the  smallest rank.  

2.3. Percentile and quartile ranked set sampling 

The PRSS procedure proposed by Muttlak (2003b) depend on selecting n random samples each 
of size n units from the population and rank each sample with respect to a variable of interest. 
If the sample size n is even, then select for measurement from the first   samples the 

 th smallest ranked unit and from the second   samples the  th smallest 
ranked unit where   and  . If the sample size n is odd, then select for 
measurement from the first   samples the  th smallest ranked unit and from 

the last   samples the  th smallest ranked unit, and the median from the middle 
sample. Quartile ranked set sampling is similar to percentile ranked set sampling but instead of 

 we select q1 and instead of  we select q3. 

2.4. Extreme ranked set sampling 

The ERSS procedure depend on selecting n random samples each of size m units from the 
population and rank each sample with respect to a variable of interest. If the number of samples 

n is even, then select for measurement from the first   samples the smallest rank unit 

(minimum) and from the second   samples the largest rank unit (maximum). If the number of 

the samples n is odd, then select for measurement from the first  samples the smallest rank 

unit (minimum) and from the last  samples the largest rank unit (maximum), and the 

median from the middle sample. 

1.5.  Stratified sampling 

In stratified sampling the population of   units is first divided into L subpopulations, which 
are consist of, say,  units. The subpopulations are called strata. To obtain the full 

benefit from stratification, the size of the hth subpopulation, denoted as   where  
, must be known. Once the strata have been determined, samples are drawn independently from 
the respective strata, producing sample sizes denoted by  , and the total sample size 

is  . If a simple random sample is taken from each stratum, the whole procedure is 

described as stratified simple random sampling (SSRS).  
If the ranked set sampling is conducted for each stratum, the whole procedure may be called as 
stratified ranked set sampling (SRSS). Same for SQRSS, SMRSS, SPRSS and SERSS. 
 
Example 1:  
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Suppose we have two strata, i.e., and . Assume that from the first stratum, we 
draw six samples, each of size 6, and from the second stratum, we draw eight samples each of 
size 8 as the following: 
Stratum 1: Six samples are obtained and ranked as follows: 

  

 

 

For the first stratum, h=1,  
The chosen elements using SQRSS are:   

The chosen elements using SMRSS are:   

The chosen elements using SPRSS are (Assuming p=40% and q=60%) 
 

The chosen elements using SERSS are:  
  
Same procedure in stratum 2 witheight samples, each of eight units: 
 
Therefore, SQRSS units consist of  

, , , , , , , . 

SMRSS units consist of  
 

SPRSS units consist of,  
, , , , , , ,  

In addition, SERSS consist of ,  
 

3. ESTIMATION OF THE POPULATION MEAN 

In the case of stratified quartile ranked set sampling (SQRSS), the estimator of the 
population meanwhen   is even and odd are defined as in (1) and (2) 

                                            (1) 

Where  ,  is the stratum size and   is the total population size.  

 

              (2) 

The variances of SQRSS1 and SQRSS2are given by  

and (3) 

In the case of stratified median ranked set sampling (SMRSS), the estimator of the population 
meanwhen is odd and even are given by  
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,  (4) 

The variance of SMRSS1 and SMRSS2are given by  

 ,    (5)                       

 
In the case of stratified percentile ranked set sampling (SPRSS), the estimator of the 

population meanwhen   is even and oddare defined as 

 ,   

 (6)            

The variance of SPRSS1 and SPRSS2are given by  

 ,  

(7) 

In the case of stratified extreme ranked set sampling (SERSS), the estimator of the 
population meanwhen  is even and oddare defined as 

,  (8) 

The variance of SERSS1 and SERSS2are given by  

,    (9) 

 
Lemma 3.1.  If the distribution is symmetric about , then 

(a)  is an unbiased estimator of the population mean. 

(b)  is an unbiased estimator of the population mean.  

(c) SPRSS  is an unbiased estimator of the population mean. 
(d)  is an unbiased estimator of the population mean. 
 
Lemma 3.2.  If the distribution is symmetricabout , then 

(a)   and . 

(b)   and . 

(c)   and . 
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(d)  and 
 

4. SIMULATION STUDY 

In this section, a simulation study is conducted to investigate the performance of SQRSS, 

SMRSS,  SPRSS and SERSS for estimating the population mean. Symmetric and asymmetric 

distributions have been considered for samples of sizes  assuming that the 

population is partitioned into two or three strata. The simulation was performed for the SRSS 

and SSRS data sets from different distributions symmetric and asymmetric. The symmetric 

distributions are uniform and normal, and the asymmetric distributions are geometric and beta.  

In case of symmetric distributions, the efficiency of estimator T relative to SSRS and SRSS 

respectively is given by 

  and           (10) 

The values of the relative efficiency found under different distributional assumptions are 

provided in Table 1. 

Table 1: The efficiency of SQRSS, SMRSS, SPRSS and SERSS relative  to SRSS and SSRS  for   and 

samples sizes   and  

Distribution   
20% 

  
30% 

 
40% 

  

Uniform (0,1)  1.3440 1.4044 2.1044 2.1137 2.1954 1.2032 

 1.8680 1.9680 2.0097 2.2431 2.3908 1.7873 

Normal (0,1)  1.9521 2.2923 2.3041 2.9172 3.2764 1.8941 

 1.2206 1.3206 1.9804 3.3480 3.7571 1.2007 

Geometric (0.5)  2.6179 3.1237 3.0745 3.0875 3.1237 2.4573 

 2.5990 3.0990 3.0711 3.0725 3.0990 2.3682 

Beta (5,2)  1.1394 1.2593 1.9593 2.5636 2.6154 1.1039 

 1.0606 1.3704 2.1604 2.6636 2.8462 1.0074 

 

5. RESULTS AND DISCUSSION 

(1) The suggested estimators SQRSS, SMRSS, SPRSS and SERSS are more efficient  

than SRSS and SSRS based on the same number of measured units.  

(2) When the performance of the suggested estimators are compared, the efficiency of the 

suggested estimators is found to be more superior when the underlying distributions 

are symmetric as compared to asymmetric. 

(3) The relative efficiency of SQRSS, SMRSS, SPRSS and SERSS estimators to those 

estimators based on SSRS and SSRS are increasing as the sample size increases.  

(4) The relative efficiency of SQRSS, SMRSS, SPRSS and SERSS estimators to those 

estimators based on SRSS and SSRS are increasing as the percentile increases.  
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ABSTRACT  

In this work, we studied mathematically the two-dimensional free surface problem of a jet of inviscid 
and incompressible fluid into a semi-infinite tube. The flow is considered to be irrotational.Where we 
take in the consideration the surface tension effect, the problem becomes very difficult because of the 
nonlinear condition on the free surface of the flow domain.This problem is also known as free boundary 
problems whose his mathematical formulation involves surfaces that have to be found as part of the 
solution. By using the integro-differential equation method, we solved numerically this problem for 
different values of the Weber number, and some typical profiles of the free surface of the jet are illustrated 

Keywords: Integral equation ; Free-surface; Inviscid flow; Weber number.  

1. THE INTRODUCTION 

In this paper the problem of flow of  a jet in a semi infinite tube is considered (See figure 1). 
The flow is steady irrotational, the flow is considered to be incompressible, inviscid  and  the 
effect of gravity is neglected, but we take in consideration the surface tension effect. The 
mathematical  problem is defined by the number of  Weber. When the effect of the surface 
tension is neglected, we can determine the exact solution by using the free streamline theory  
based on the  conformal  mapping theory[3]. In this case and when the effect of surface tension 
is considered, The  problem becomes very difficult to solve analytically because of the 
nonlinear condition given by the Bernoulli equation on the free surface. which obliges us to use 
numerical techniques and methods that depend on conformal transformations to solve it. we 
use the integro-differential equation method and the Cauchy theorem. the main advantage of 
this method is to transform two-dimensional problems into unidimensional problems. To solve 
free surface problems, this method has been adopted by many previous authors  ( [1], [4], [5], 
[6], [7] ). We were able to calculate the solution for different values of the Weber number and 
channel width. The results found confirm those found in [1].  

2. MATHEMATICAL FORMULATION 

The irrational flow along a semi-infinite rectangular channel is assumed. The fluid is 
inviscised and incompressible (see Figure 1) 
The mathematical problem is to find the  function  verified the following equation: 
 

         (1) 
Where  is the velocity potential  

    (2) 

                 (3) 

 , on the free surface.       (4) 

In this case  is the density,  is the surface tension, and  is the curvature of the free surface 
                                                  (5) 

in which   the speed unit. 

                                                           
*Correspondingauthor  
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Figure 1: Sketch of the flow and the coordinates 

 
In this way, the complex velocity W and the complex potential function f can be defined as: 

 

 

Where and represent the horizontal and vertical components of the fluid velocity. 
Without loss of generality, we choose  along the bottom , then on 
stream line  and the configuration of the flow in the complex potential plane is sketched 
in Figure 2. 
 

 
Figure 2: The complex potential f plane. 

 
We are currently formulating the problem as an integral equation. 
We define the function as: 
 

 
Substitute (6) in (4), provides us with the final form of the Bernoulli equation that is necessary 
for numerical calculation 
 

The kinematic boundary conditions on  and  can be expressed as: 
 

     (8) 
 

           (9) 
 

(10) 
 
The function   is analytic in the strip  and satisfy the conditions (7), (8), (9) 
and (10). 
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We map the flow domain onto the upper half of the -plane by the transformation
 

                   (11) 
 

The walls ,  and  are mapped onto . The problem in the complex  
plane is illustrated in Fig.3. 

 
Figure 3: The complex -plane. 

 
We introduce the curvilinear or contour integral of the function on a path closed by 
 

              (12) 

Where  is an image point of any point on the free surface  The path  consists of a 
large semi-circular arc of radius , centred at the origin, and the real axis with a circular 
indentation of radius  about the point  See Figure 4. 

 
  

Figure 4: The complex -plane showing the contour. 

 
When  tends to infinity, the contribution to the integral shape of the semicircle of radius  
tends towards zero. 
To the integrale in (12) is the principal value of Cauchy. Kinematic conditions (8), (9) , 
(10)and (11) imply 

 
                       (14) 

and 
                     (15) 

and 
                        (16) 

 

           (18) 

 
where  and  
 
In ( 18) this integral equation is substituted to create an integro-differential equation which is 
then solved numerically. 
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3. NUMERICAL PROCEDURE 

To solve the integro-differential non-linear equation obtained in the previous section. We use 
the numerical procedure and before that. The expression (18) is used to calculate  along the 
free surface. It is necessary to have points, , along the free surface from which the values  
can be evaluated. 
This is done by creating a discrete of the potential function-, on the free surface  
Let 

             (18) 
Where  
 
we assess the values of  at the midpoints 
 

             (19) 

 
by applying the trapezoidal rule, we obtain 
 

       (20) 

 
where   and  is the weighting function such that 
 

 

And  

          (21) 

 
Substituting (20) into (7), for all the   midpoints, yields a system of nonlinear algebraic 
equations for unknowns ,   
The numerical calculations the previous, give a solution for the variables  and . These 
variables are now used to obtain the equation of the free surface profile in the parametric form 

 and   Taking the real and imaginary parts of (6) we obtain 
 

                        (22) 

And 

                        (23) 

4. DISCUSSION OF RESULTS 

Solution without surface tension effect 

Numerical results are obtained when the Weber number tends towards infinity, i. e. when the 
surface tension effect tends towards zero, the system is reduced to : 
 

          (26) 
 

We use the resolution method described above to resolve the system (26). We find that our 
results are identical to the results we have already found in the article [3]  
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Solution with tension effect

The same numerical procedure is used to solve the non-linear system (7) for different values 
of the Weber We number. The numerical calculation shows that there is a minimum value. 
We = 8 for which our numerical procedure converges 
For  all graphs describing the shape of the free surface are identical and coincide 
with the exact solution, so it can be said that surface tension after this value can be neglected. 
Figure 6 shows the different free surface profiles for  and the few different values of 
H. 

 
Figure 6: Free surface shapes for different Weber number values and different H 
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ABSTRACT  

In the present paper, several types of stability of  the zero solution for a semilinear fractional-
order  system with exogenous input and Caputo fractional derivative have been studied using 
the Lyapunov function. In particular,  conditional asymptotic stability and conditional Mittag-
Leffler stability have been presented by introducing the Mittag-Leffler function of one and two 
parameters. 

Keywords: Nonlinear fractional order system; fractional calculus; conditional asymptotic 
stability; uniformly asymptotic stability; globally uniformly asymptotic stability.  

1. INTRODUCTION 

The fractional calculus generalizes the derivative and the integral of a function to the non-
integer order. Several defnitions have been introduced by Grunwald-Letnikov, Caputo, 
Riemann-Liouville and others, in the next section we recall some of these definitions. For more 
details, interested authors advised to consult for example [11,19, 20]. 

In this work, we focused on the Mittag-Leffler function, one of the important special  
functions used in fractional calculus. Its importance is realized during the last one and a half 
decades due to its direct involvement in the problems of physics,biology, engineering and 
applied sciences. Mittag-Leffler function naturally occursas the solution of fractional-order 
differerential equations and fractional-order integral equations. Various properties of Mittag-
Leffler functions are described in [5, 10, 15, 18]. Among the various results presented by 
various researchers, the important ones deal with Laplace transform and asymptotic expansions 
of these functions, which are directly applicable in the solution of differential equations and in 
the study of the behavior of the solution for small and large values of the argument.  

Recently, fractional calculus was introduced to the stability analysis of nonlinear systems, 
see for example, [17] and many problems have been studied on this subject [7, 8, 13], where 
some basic results are obtained including stability theory. The question of stability is of main 
interest in physical and biological systems, such as the fractional Duffing oscillator [12], 
fractional predator-prey and rabies models [1]. Stability of nonlinear systems received 
increased attention due to its important role in areas of science and engineering. A large number 
of monograph and papers are devoted to the fractional nonlinear systems [3, 6, 14]. 

2. NOTES OF FRACTIONAL CALCULUS 

 Definition 2.1.  ([19,20]). For a given interval  in  the Riemann-Liouville fractional 

integral of order of a function u in is defined by: 

(1) 

Definition 2.2.  ([19]).  For a given interval in the Caputo fractional derivative of order 

of a function is given by: 

(2)
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where   
Definition 2.3. ([9,16])  The Mittag-Leffler function  with two parameters is defined by 

(3) 

where     and   

3. NOTIONS PRELIMINARIES 

Consider the following system of fractional differential equation with Caputo derivative 
(4) 

where  and    

We will assume that for any initial data     the system  (4)  with the initial 

condition  has a solution  The purpose of the present 
paper is to study the stability of the  system  (4), for this fact let us suppose that in the rest of 
this paper that the origin is a point of equilibrium of the fractional-order system (4), that 
is Now, to get our results we need the following definitions: 

Definition  3.1. The equilibrium point of  the fractional-order system (4) is said to be 
(a) Stable, if for every and there exists such that for any 

the inequality implies for  

(b) Uniformly stable, if for every and there exists such that 

for any and the inequality   holds for  

(c) Uniformly attractive, if there exists such that for every there exists 

 such that for any with the inequality 

holds for  

(d) Globally uniformly attractive if the definition (c)  is verified for any  
(e) Uniformly asymptotically stable, if  it is uniformly stable and uniformly attractive. 
(f) Globally uniformly asymptotically stable,  if it is uniformly stable and globally uni- 

formly attractive. 
 Definition 3.2. We say that a continuous function is belongs to the class if it 

is strictly increasing and If furthermore we say that belongs to 

the class A continuous function is said to be class if  
Definition 3.3. The nonlinear fractional-order system (5) is said to be conditional asymptotic 
stable, if for such that for any input there exist a class function satisfy- 

ing for each bounded initial condition the solution satisfies 

(5) 

Definition 3.4. The nonlinear fractional-order system (4) is said to be conditional Mittag-
Leffler stable, if for such that input the solution satisfies 

(6) 

where are two positive constants. 
Lemme 3.1. Let us consider the following initial value problem for a nonhomogeneous frac- 
tional differential fractional equation with the Caputo fractional derivative of order  
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(7)
 

Problem (7) was studied by Podlubny in [19] and its solution is given by: 
(8) 

4. STABILITY RESULTS 

Theorem  4.1. Assume that there exist a function which has Caputo 

fractional derivative of order for all such that and a class functions 

satisfying 

(9)                  

                                                    (10) 

 If the input is satisfied, then  is uniformly asymptotically stable. In addition, if 

are two class functions, then is globally uniformly asymptotically stable. 

Proof of Theorem4.1. First, we show that is uniformly stable. The condition (10) 
implies that there exist a nonnegative function satisying 

(11) 

From (11), it follows that: 

 

(12)
 

 

then,  the condition (9) and inequality (12) leads to: 
(13) 

Now, for any we can find such that Let such that 

By using (10) and (13), we obtain that:  

Since then we have: Therefore, is uniformly stable. 

Now, we show that is uniformly attractive. Let be a positive number such that 

From the assumption and the conditions (9) and (10) it follows that: 

(14) 

The inequality (14) implies that, there exist a nonnegative function satisfying: 

(15) 

Then, we have  

(16) 

A combination of (9) and (16) gives: 
(17) 

that is to say: 
(18) 

From (18), it follows that : 

(19) 

Since then  
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(20) 

(because ). Hence, we have for all   there exist  such that : 

 

which means that: 

(21) 

Thus, from (19) and (21), it follows that:    

The last inequatlity shows that is uniformly attractive. Therefore, is uniformly 
asymptotically stable. Now, suppose that  In view of (17), it follows that: 

(22) 

Let  and such that   From (22), it follows that: 

(23) 
Then, by using (20), we find that there exist  such that: 

(24) 

hence, from (23) and (24) we obtain:     

this inequality means that is globally uniformly attractive. Therefore, is globally 
uniformly asymptotically stable.  

Theorem  4.2. Assume that there exist a function which hasCaputo fractional 

derivative of order for all and a class functions satisfying 

(25) 

(26) 

then  is conditional asymptotically stable. 

Proof of Theorem4.2.In view of the condition (26) and the assumption we find that:

then there exist a nonnegative continuous 

function such that  

From Lemma 3.1, it follows that for   

(27) 
 
Therefore, the inequality (27) and the condition (25) leads to: 

 
 
this means that: 

(28) 

Then (28) gives:  Thus,  is conditional asymptotically stable.  

Theorem  4.3. Assume that there exist a function which has Caputo     

fractional derivative of order for all and a class KL function  satisfying 

(29) 

(30) 
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where and are positive constants. Then is conditional Mittag-Leffler stable.

Proof of Theorem4.3. By the conditions (29),(30) and the assumption we find that:

 
(31) 

Inequality (31) means that there exist a nonnegative function such that: 

(32)             By using Lemma 3.1, it follows that for 

 where is a positive constant. Then point 

 is conditional Mittag-Leffler stable.  

5. ILLUSTRATIVE EXAMPLE 

Before giving some illustrative examples, we need the following auxiliary lemma: 
Lemme 5.1. ([2]). For any differentiable vector  and any time instant we have: 

 

Now, In all that follows, we consider and stands for its 

Euclidean norm: and  

Example 5.1. Consider the following fractional-order system: 
 
 
                                                                                     
 

  (33) 
 
 
 

: with the input By using Lemma  5.1, we have:
 

 

 

Then, it is enough to choose Now, all assumptions of the  

Theorem 4.2 are satisfied, therefore is conditional asymptotically stable. 
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ABSTRACT 
In this article, the mixed convection boundary layer flow in micropolar nanofluids at the lower 
stagnation point of a solid sphere in a stream flowing vertically upwards has been studied 
numerically for both issues of a heated and cooled solid sphere with a constant surface heat flux. 
Grephene oxide nanoparticle suspended in two different types of fluids namely water and 
kerosene oil. The governing partial differential equations including continuity, momentum and 
energy have been reduced to ordinary differential equations ones and solved via an implicit 
finite-difference scheme known as the Keller-box method. Numerical solutions are taken out 
for temperature profiles, velocity profiles, angular velocity profiles, with different values of the 
parameters, namely, the nanoparticle volume fraction  and the mixed convection parameter 

. itis found that GOwater has higher in temperature compared with GOkerosene oil 

Keywords:Mixed Convection, stagnation point,MicropolarNanofluid, Solid Sphere.  
 

1. INTRODUCTION: 

A nanofluid is a heat-transfer fluid[1] containing nanoparticles with a size smaller than 100 nm 
such as oxides, metals and carbides [2]. Common base fluids comprise water oil and ethylene 
glycol[3], The nanoparticles have a unique chemical and physical properties, while compared 
only to base fluid, will increase the efficiency of the thermal conductivity and the convective 
heat-transfer coefficient [4]. Nanofluids have many properties that make them potentially useful 
in several applications in heat transfer, such as microelectronics, fuel cells, pharmaceutical 
processes, and hybrid-powered engines. Buongiorno, [5] published an article on the convective 
transport in nanofluids. The nanofluid flow inside a two-sided lid-driven differentially heated 
square cavity is studied numerically by Tiwariet al, [6]. The nanofluids used to acquire optimum 
thermal properties at the lowest volume fraction of nanoparticles in the base fluid by Godson 
et al, [7]. Kandelousi, [8] also considered the nanofluid flow and heat transfer through a 
permeable channel. Haqet al, [9] studied the slip effect on heat transfer nanofluid flow past a 
stretching surface.Several references have on nanofluid as in the universal book by Das et al, 
[1], and many studies that have been conducted to boost the heat-transfer characteristics 
technique by nanofluids, including those by [10-16].  

The classical Navier-Stokes theory described the flow properties of non-Newtonian 
materials, but this theory was not suitable to describe microrotations, certain microscopic 
effects growing from the local structure of fluid elements, and some naturally arising fluids, 
which are known as micropolar or thermomicropolar fluids. Micropolar fluid theory and its 
dilation to thermomicropolar fluids were initially introduced by Eringen, [17]. Further, many 
physicists, engineers and mathematicians have been studied on the micropolar fluid to conclude 
the different results related to flow problems. Hassanienet al[18]presented the boundary layer 
flow and heat transfer from a stretching sheet to a micropolar fluid. Papautskyet al, [19] 
investigated the laminar fluid behaviour in microchannels using micropolar fluid theory. 
Nazaret al, [20]consideredstagnation point flow of a micropolar fluid towards a stretching 
sheet.Exact solutions are obtained by the Laplace transform technique for the unsteady flow of 
a micropolar fluid by Sheriefet al[21]. Hussananet al[22]described the microrotation, 
temperature, velocity and concentration are considered. Hussananet al[23]explained the 
unsteady natural convection flow of a micropolar fluid on a vertical plate oscillating in its plane 
with Newtonian heating condition. Free convection boundary layer flow of micropolar fluid on 
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a solid sphere with convective boundary conditions was considered by Alkasasbehet al,[24]. 
Alkasasbeh,[25] explores the heat transfer magnetohydrodynamic flow of micropolar Casson 
fluid on a horizontal circular cylinder with thermal radiation. Natural convection on boundary 
layer flow of Cu-water and Al2O3-water micropolar nanofluid about a solid sphere investigated 
by Swalmehet al, [26] and micropolar forced convection flow over moving surface under 
magnetic field was inspected byWaqaset al,[27]. 

The aim of this paper is to study the mixed convection boundary layer flow over a solid 
sphere in a micropolarnanofluid with constant surface heat flux. graphene oxide (GO) in two 
based micropolarnanofluids (water and kerosene oil) havebeen considered in the present 
investigation. The boundary-layer equations are solved numerically via efficient implicit finite-
difference scheme known as the Keller-box method, as displayed by [28]. The effect of the 
nanoparticle volume fraction parameter, the mixed convection parameter and micro-rotation 
parameter on temperature, velocity and angular velocity at the lower stagnation point of the 
sphere are discussed and explained in the tables and figures. 

2. BASIC EQUATIONS 

Consider the impermeable solid sphere of radius a, which is placed in an incoming stream of 
micropolarnanofluid with an undisturbed free-stream velocity  and constant temperature 

, with steady mixed convection boundary-layer flowIt is also supposed that the surface of 

the sphere is maintained at a constant temperature,  with for a heated sphere 

(assisting flow) and  for a cooled sphere(opposing flow). 

The basic steady dimensionalmomentum and energy equations for micropolarnanofluid,which 
are defined byTiwari and Das [6].and Swalmeh et al.[26] 

          (1) 

          (2) 

         (3) 

alongwiththe boundary conditions 

                    (4)
 

where the primes denote differentiation with respect to y.[28].  
 

3. RESULTS AND DISCUSSIONS 
Equations (1) (3) subject to the boundary conditions (4) have been solved numericallyby using 
an efficient implicit finite-difference scheme known as the Keller-box method, along with 

[28]for verious values of parameters: mixed 
convection parameter , the micro-rotation parameterK, and the nanoparticle volume fraction 

on temperature, velocity and angular velocity fields, at the lower stagnation point of a solid 

sphere, , for both the assisting  and opposing ( ) flow cases 
Figures 1to6display the characteristics of the nanoparticle volume fraction and the 

micro-rotation parameter K  on the temperature profiles, the velocity profiles, and the angular 
velocity respectively, of  in water and kerosene oil at the lower stagnation point of the 
sphere, . It can be seen that when the nanoparticle volume fraction  and the micro-
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rotation parameter  increase, the velocity profiles and the angular velocity profiles decrease, 
but the temperature profilesincrease. Besides that, it is also noticed that water has a higher 
temperature, velocity and angular velocity compared with kerosene oil for every value 
ofthe nanoparticle volume fraction  and the micro-rotation parameter . 

 
Fig.1. Temperature profiles at using 

in water and kerosene oil-
basednanofluids, for various values of , 

when and . 
 

 
Fig.2. Velocity profiles at using 
in water and kerosene oil-basednanofluids, 
for various values of , when and 

 

 
Fig.3. Angular velocity profiles at  

using in water and kerosene oil-
basednanofluids, for various values of , 

when and  
 

 
Fig.4. Temperature profiles at using 

in water and kerosene oil-
basednanofluids, for various values of , 

when and  
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Fig.5. velocity profiles at  using 
in water and kerosene oil-basednanofluids, 
for various values of , when and 

. 
 

 
Fig.6 Angular velocity profiles at  

using in water and kerosene oil-
basednanofluids, for various values of , 

when and . 

. 
4. CONCLUSIONS 

In this paper, we have numerically studied the mixed convection boundary-layer flow about 
solid sphere in amicropolarnanofluid with constant surface heat flux. We discussed into the 
effects of the mixed convectionparameter , the nanoparticle volume fraction , the micro-

rotation parameter and nanoparticles GO suspended in two based fluids, such as water and 
kerosene oil. The problem is modelled and then solved via Keller box method. From this study, 
we could conclude the following conclusions: 

i. The GO water has a higher temperature, velocity and angular velocity compared with 
GO kerosene oil for every value of parameters and . 

ii. The GO kerosene oil has a lower temperature compared with GO water for every value 
of. . 

iii. The GO water has a higher velocity and angular velocity compared with GO kerosene 
oil for every value of parameter , but the opposite happens when the case of the 
cooled sphere (  ). 
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ABSTRACT  

In this letter, the existence of some properties of solutions in 3-D Lozi map is presented, that 
the results have been confirmed by simple rigorous mathematical analysis methods. 
 

Keywords: 3-D Lozi map, Unbounded orbits, Global attractors, solutions of the 3-D Lozi map. 

1. INTRODUCTION   

In literature [2], the three-dimensional Hénon map is quadratic map with constant Jacobian 
matrix determinant, and its inverse map is quadratic, and the coordinates are not decoupled by 
the action of the map. Several researchers have defined and studied quadratic 3-D chaotic maps 
such as with quadratic inverse and constant Jacobi [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] 
such as the simplest 3-D quadratic map studied in [1] and given by 
 

(1) 

 
Where  and  are map parameter,  and . The chaotic 
attractor in Fig.1 exhibited by the 3-D Hénon map (1) is very similar to the attractor of the 
famous 2-D Hénon map [14, 15] and are obtained from a period-doubling bifurcation route to 
chaos. 
 
The 3-D Lozi map (2) is a simplification form of the 3-D Hénon map (1), obtained from a 
simple modification the quadratic nonlinear term  is replaced by the piecewise term . Then 
the form of the 3-D Lozi map (2) is given by 
 

(2) 

 
Furthermore, recent publication [13] show that while varying the parameter  or  the 
attractor of the 2-D Lozi map [16] and the attractor of the 3-D Lozi map (2) in Fig.4 are very 
similar and are obtained from a border-collision bifurcation route to chaos. 
On the other hand we can transform the 3-D Lozi map (2) into a third order difference 
equation: Let ( , ),  be a trajectory of the map (2) and we suppose , 

 and  then the map (2) can be written as  
 

                                                                            (3) 
 

we remark that the space can be separated into two linear areas are defined by  
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In the two areas and  , map (3) can be rewritten as follows 
 

 

 
This paper studies the existence of some properties of solutions of the 3-D Lozi map (3) such 
as, stability, attractivity, unboundedess and exact formula of solutions. 
 

 
 

Figure 1: Chaotic attractor obtained in xy-plan from the 3-D Hénon map (1) for 
 and .

 
 

Figure 2: Bifurcation diagram of the 3-D Hénon map (1) obtained for  
and . 
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Figure 3: Variation of the largest Lyapunov exponent of the 3-D Hénon map (1) 
for  and   . 

 
 

Figure 4: Chaotic attractor obtained in xy-plan from the 3-D Lozi map (2) for 
 and . 
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Figure 5: Bifurcation diagram of the 3-D Lozi map (2) obtained for  
and  .

 

 
 

Figure 6: Variation of the largest Lyapunov exponent of the 3-D Lozi  map (2) 
for  and  . 

 
 

2. STABILITY CONDITIONS OF SOLUTIONS OF THE 3-D LOZI MAP 

In this section we investigate the local stability of solutions of the 3-D Lozi map (3). 
 
Theorem 2.1. For all values of the map parameters  :   and  

, the 3-D Lozi map (3) has two fixed points, and they are given by 
 

 and  .  
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Proof. The fixed point of the 3-D Lozi map (3) is the real solutions of 
 

 
 

If  we have  then one has,  with  then we 

have the fixed point  If  we have  then one has,  with 

 then we have the fixed point  
 
Theorem 2.2. If  and , then the fixed point  of the 3-D Lozi map (3) is locally 
asymptotically stable if . 
 
Proof. Let  : be a function defined by , we have 

 and . If  and , the linearized 
equation of the 3-D Lozi map (3) associated with this fixed point  is, 

. 
or 

 
(4) 

 
according to the Theorem available in [15] the 3-D Lozi map (3) is asymptotically stable if 
 

(5) 
 

For  and from (5) we obtain .  
 
Theorem 2.3. If  and , then the fixed point  of the 3-D Lozi map (3) is not 
locally asymptotically stable if  
 
Proof. Let  : be a function defined by , we have 

 ,  and . If  and ,  the 
linearized equation of the 3-D Lozi map (3) associated with this fixed point  is, 

. 
 
or 

(6) 
 

according to the Theorem available in [15] the 3-D Lozi map (3) is not asymptotically stable 
if 
 

(7) 
 

For  and from (7) we obtain .  
 

3. ATTRACTIVITY OF SOLUTIONS OF THE 3-D LOZI MAP 

In this section, we aim to examine the global attractivity of solutions of the 3-D Lozi map (3): 
 
Theorem 3.1. If  and  , then the fixed point  of the 3-D Lozi map (3) is 
global attractor  
 
Proof. Let  ( ) are a real numbers and consider that  on 
defined by  then it is easy to see that the function  is increasing 
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in if and decreasing in if . Suppose that is a solution of the system 
 and  then we have that  and 

 therefore ,subtracting we have that 
 since  we obtain . According to the 

result available in [18] that the S  is a global attractor of the 3-D Lozi map (3). 
 
 
Theorem 3.2. If and  , then the fixed point  of the 3-D Lozi map (3) is global 
attractor. 
 
Proof. Let  ( ) are a real numbers and consider that  
defined by  then it is easy to see that the function  is 
increasing in  if  and decreasing in  if . Suppose that  is a solution of the 
system  and  then we have that  and 

 therefore ,subtracting we 
have that  since  we obtain . According 
to the result available in [18] that the  is a global attractor of the 3-D Lozi map (3). 

4. UNBOUNDEDNESS OF SOLUTIONS OF THE 3-D LOZI MAP 

In this section, we give sufficient conditions for the existence of unbounded solutions. 
 
Theorem 4.1. If ,  and , then the every orbit of the 3-D Lozi map (3) 
is unbounded if . 
 
Proof. Let  be a solution of map (3). If  and  the 3-D Lozi map (3) can 
be rewritten as follows 
 

(8) 
 

from (8), it follows that for all  

  
 
by the method of iterations, we have for all integral values of  
 

  
 

it is clear that the orbit is unbounded since  
 
Theorem 4.2. Let  be a solution of map (3).If ,  and , then 
the every orbit of the 3-D Lozi map (3) is unbounded if  and is an even number. 
 
Proof. Let  be a solution of map (3).If  and  the 3-D Lozi map (3) 
can be rewritten as follows 
 

(9) 
 

from (9), it follows that for all  

 -  
 
by the method of iterations, we have for all integral values of  
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-
 

it is clear that the orbit is unbounded since  and  is even. 

5. Conclusion 

In this letter we give the suffcient conditions for the existence of some properties of solutions 
in a 3-D Lozi map. that the results have been confirmed by simple analysis proof. 
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1. PRELIMINARIES  

In this section, we collect several known definitions and results that will be used later on. 
A matrix  is called sign regular of order k (denoted by SSRk) if all its minors of order k are non-
negative or all are non-positive. It is called strictly sign regular of order k (denoted by SSRk) if 
it is sign regular of order k, and all the minors of order k are non-zero. In other words, all minors 
of order k are non-zero and have the same sign. Such matrices are only rarely considered in the 
literature, see, e.g., [7], where a test for an   matrix with  to be SSRk is presented. A 
matrix is called sign regular (SR) if it is SRk for all k, and strictly sign regular  (SSR) if it is 
SSRk for all k. Given a square matrix  and , consider the  minors of 
A of order p. Each minor is defined by a set of p row indexes 1 , and p 
column indexes 1 This minor is denoted  where and  

(with a mild abuse of notation, we will regard these sequences as sets), we 
suppress the curly brackets if we enumerate the indexes explicitly. We mean by k -minors of A 
all minors of A of order k and say the minors of  A are ssr when they are all non-zero and have 
the same sign. 

.  

2. INTRODUCTION  

The most important examples of SR [SSR] matrices are totally nonnegative TN [totally positive 
TP] 
 matrices, that are, matrices  with all minors nonnegative [positive]. Such matrices have 
applications in a number of fields including approximation theory, economics, probability 
theory, computer aided geometric design and other fields [3], [5], [8].  
 
In qualitative and combinatorial matrix theory, a methodology based on the use of 
combinatorial information such as the signs of the elements of a matrix is very useful in the 
study of some properties of matrices. A matrix whose entries are chosen from the set  
is called sign pattern matrix, the multiplicative and additive rules covering the symbols  
are the same as in real numbers. A zero pattern is a sign pattern matrix whose entries are all 
equal to 0. Given an  real matrix , we denote by sign(A) the sign pattern matrix 
obtained from A by replacing each one of its positive entries by + and each one of its negative 
entries by . For an sign pattern matrix p, we define the sign pattern class by 
 

 
 
A permutation pattern is simply a sign pattern matrix with exactly one entry in each row and 
column equal to , and the remaining entries equal to 0. A product of the form , where S 
is a square permutation pattern and P is a sign pattern matrix of the same order as S, is called a  
permutation similarity. A square sign pattern matrix whose off-diagonal entries  are equal to 
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zero is called a diagonal pattern, and a product of the form , where D is a diagonal pattern 
with no zero entries in the main diagonal and p is a sign pattern matrix of the same order as D, 
is called a diagonal similarity. Note that  and DpD are again sign pattern matrices. The 
origins of sign pattern are in [9], where the author pointed  to the need to solve certain problems 
in economics and other areas based only on the signs of entries of the matrices. The exact values 
of entries of the matrices may not always be known.  
A sign pattern matrix p is said to require a certain property  referring to real matrices if all 
real matrices in  have the property , and is said to allow the property   if some real 
matrices in have the property . In the literature, one can find, in the last few years, an 
increasing interest in problems that arise from the basic question of whether a certain sign 
pattern matrix requires (or allows) a certain property. See, e.g., [1], [4].  
 

3. SIGN-PATTERN OF SIGN REGULAR MATRICES  MATRICES OF 
ORDER 2 QUATIONS  

In this section, we focus on the question which sign pattern matrices allow the property of 
belonging to the class . A graph theoretical approach will be quite useful to answer this 
question. Let  an   sign pattern matrix. The graph G(p)=(V(G),E(G)), where the 
set of vertices V(G) is and  is an edge or arc in E(G) if and only if . A 
path in a graph is a sequence of edges , in which all vertices are 
distinct, except, possibly, the first and the last. The length of a path is the number of edges in 
the path. A cycle is a closed path, that is a path in which the first and the last vertices coincide. 
Given a cycle in , in a graph G(p), where   is 
a sign pattern matrix, we define the sign of the cycle as 1 if  and 

.  
 
Remark 3.1. [1, p.2048] 
If p is a sign pattern matrix whose associated graph is a directed n-cycle, then there is a 
permutation similarity that transforms p into the following form  
 
 
 
 
 
 
 
 
 
 
 
where   and  for . We will treat the graph as undirected when 
convenient. Also if p is a sign pattern matrix whose associated graph is a directed n-cycle with 
n-loops, i.e.,  for all for , then there is a permutation similarity that transforms 
p into the following form  
 
 
 
 
 
 
Similar to Definition 3.1 [2], we introduce the following definition.  
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Definition  3.2.
We say that a sign pattern matrix  has the loop-path property if  for every 

 (as a convention . 
 
Theorem  3.3. 
Let  be an   sign pattern matrix with  for all i whose associated graph 
G(p) is an undirected n-cycle. Then there exist a SR2 matrix in C(p) if and only if   has the 
loop-path property and the sign of the n-cycle is -1. 
 
proof 
 Let  be an  sign pattern matrix with  for all i whose associated graph 
G(p) is an undirected n-cycle and there exists  matrix in . Without loss of generality 
and by Remark 4.1 we may assume that any matrix  is of the form  
 
 
 
 
 
 
 
 

   
  
 
where sign (  =  for all choices of 
i and j and i,i+1 . Suppose that there 
exist  such 
that , (as a convention 

). Since  is , we have 
  

 
 If  this contradicts A is  If   this contradicts the 
fact that                                                

 
 
Thus p has the loop path property and the sign of the n-cycle ia . 
Conversely, assume p has the loop path property. p by permutation similarity see Remark 4.1, 
has the following form:  
 
 
 
  
 
 
 
 
 
 
 
 
Let D  be the diagonal sign pattern matrix defined by  

 
Given that  for , it is easy to see that  
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Since p has the loop-path 
property and the sign of 
n-cycle is , it is clear 
that all the 2-nontrivial minors of the matrix B, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
are ssr, i.e., B is a  matrix in C(DpD-1), by using diagonal similarity, we conclude that there 
exists  matrix in  which completes the proof.                                                                        

4. CONCLUSION AND FUTURE WORKS 

In this work we identify conditions under which the sign pattern corresponding to 
undirected cycles admits  matrices. Topics for future research include sign patterns 
that does not correspond to undirected cycles and admit  matrices. If a sign pattern 
matrix   and two arbitrary real matrices  then 

, we call this property the closure property of SRk matrices.The question arises 
whether the matrices have the closure property. Recently, we study the interval 
property of matrices that are strictly sign regular of given orders. To explain the interval 
property, we define  by , where . 
The transformation  is usually the "checkerboard transformation." As usual, 

and  for   will be understood entry-wise. Let  and  
if  and , respectively. The set of the matrix interval with respect to the 
partial ordering  will be denoted by , and  with , 

. Equivalently, a matrix interval can be represented as an interval matrix, i.e., a 
matrix with all entries taken from I(R), the set of the compact and nonempty real 
intervals. We extend the properties of real matrices to matrix intervals by saying that a 
matrix interval has a certain property if each real matrix contained in the interval 
possesses this property. Matrix intervals of several classes of matrices are investigated 
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by some mathematicians, see e.g., [6], [10]. The question arises whether a sign pattern 
that admits sign regular matrices of specific order have the interval property. 
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ABSTRACT  

In this work, we obtain some  results concerning the quasi-Hadamard product for subclasses

 and  of -spirallike functions of order .  
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1. INTRODUCTION AND PRELIMINARIES 

Let 

 (1)    

(2) 

    (3) 

and 

     (4) 

be analytic in . 

A function of the form (1) is said to be in the class  if and only if 

                                (5)     

for some real  and . Also if and only if 

       (6)

 

 

for some real  and .  The classes and were introduced by 

Owa et al. [9] for where S  is the class of all analytic and univalent 

in  This class of functions has been extensively exploited in some recent articles to study 
subclasses of functions satisfy certain conditions(see [12-19]). 
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    In [9], Owa et al. proved that  (the class of -spirallike functions of 

order ) if 

(7) 

and  (the class of -Robertson functions of order ) if 

(8) 

(see [1, 5]). 
    Using arguments, as given by Owa et al. [9], wehave the following results for classes 

and . 

    If satisfies 

       (9) 

for some  and  then , and if  satisfies 

             (10) 

for some  and  then  

For functions defined by (1), let  and  the classes of whose coefficients 

satisfy the conditions (7) and (8), respectively. We note that and 

. 

    We now introduce the following class of analytic functions. 

Definition 1.1.  A function for some  and  

if and only if 

      (11) 

We note that, the class  is nonempty as the following function 

(12) 

where  and and Accordingly, the quasi-

Hadamard product of functions  and is given by 

(13) 

(see Owa [10, 11] also, [2]-[8]). 
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2. MAIN RESULTS 

Theorem 2.1.  For each and let the functions defined by 

(3)be in the class and defined by (4)be in the class Then 

. 

 
Proof.  Let then  

 

It sufficient to show that 

 

Since  so 

     ( ). 

Therefore, 

                          (14) 

Since 

 

it follows from (10) that 

            ( ).          (15) 

Alsofor we have 

( ).         (16) 

Hence we obtain 

( ). (17) 

Using (11) for ,  (13) for , and (12) for we obtain 

 

Hence  
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Corollary 2.2.For each  let the functions defined by (3)belong to

. Then  

 
Corollary 2.3.For each  let the functions defined by (4) be in the class 

.Then  
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ABSTRACT  

In this paper, we first introduce complex fuzzy parameterized soft set (CFPSS) and its related 
properties. We then give basic operations on CFPSS namely complement, union and 
intersection. Some properties of the operations are derived.  

Keywords: Fuzzy soft sets; fuzzy parameterised soft sets; complex fuzzy parameterised soft set; 
CFPSS. 

 

1. INTRODUCTION 

In 2002, Ramot et al. introduced the innovative concept of complex fuzzy set (CFS), where 
the novelty lies in the range of values its membership function may attain. In contrast to 
traditional fuzzy membership function, this range is not limited to [0, 1], but extends to the unit 
circle in the complex plane. Historically, the introduction of real numbers was followed by their 
extension to the set of complex numbers. Thus, in this research we will sug-gest a further 
development from real numbers to complex numbers, which is allowed to utilize the benefits 
of the complex numbers and fuzzy parameterized soft set properties under our generalization 
concept in this research. 

Initially, let us recall the development of the main concepts, which are used in this research, 
fuzzy set (FS), soft set (SS), fuzzy soft set (FSS), fuzzy parameterized soft set (FPSS), complex 
fuzzy set (CFS) and complex fuzzy soft set (CFSS). Fuzzy set contains all the possible elements 
in each particular context or application and vast field, where fuzzy mathematical principles are 
developed by extending the range of values its membership func-tion may attain from {0, 1} in 
classical mathematical theory to [0, 1] in fuzzy set. It was introduced by Zadeh (1965). There 
has been unbelievable interest in this concept due to its different applications and its ability to 
pro-vide solutions in many problems of control, reasoning, pattern recognition, and computer 
vision. 

In this research we incorporate two new concepts, complex fuzzy soft set and fuzzy 
parameterized soft set, to introduce the innovative concept of complex fuzzy parameterized soft 
set. Soft set was introduced by Molodtsov (1999). It is a parameterized family of subsets of the 
universal set. However, to solve complicated problems in economic, engineering and 
environment, we cannot successfully use classical methods because of different uncertainties 
typical for those problems, but with soft set we can solve these problems.Later, fuzzy soft set 
was introduced and studied by Maji et al. (2001) and other authors like Chen et al. (2005) and 
Aktas et al. (2007). It is a more generalized concept, which is a combination of fuzzy set and 
soft set. In thedefinition of a fuzzy soft set, fuzzy subsets are used as substitutes for the crisp 
subsets. Hence, we can say that every (classical) soft set may be considered as a fuzzy soft set. 

decision making method based on FP-soft set theory. Also, he illustrated an example which can 
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be successfully applied to the problems that contain uncertainties. Besides, other researchers 

 
In 2011, complex fuzzy soft set (CFSS) was introduced by Nadia (2011). It is a more general 

concept, which is a combination of complex fuzzy set and soft set. She generalised the range 
of membership function of fuzzy soft set from [0, 1] to the unit circle on CFSS to introduce 
CFSS. She also introduced basic operations such as com-plement, union and intersection. 

fuzzy parameter-ised soft set (FPSS) and their operations (Naim et al, 2010). More detailed 
theoretical study of this co . The 
approximate function of a soft set is defined from a crisp parame-ters set to a crisp subsets of 
universal set. But the approximate functions of FPSS are defined from fuzzy param-eters set to 
the crisp subsets of the universal set.  

The complex fuzzy set is characterised by a membership function, whose range is not limited 
to [0, 1] but ex-tend to the unit disk in the complex plane. As explained in Ramot et al. (2002) 
the key feature of complex fuzzy set is the presence of phase and its membership. This gives 
the complex fuzzy set wavelike properties that could lead in constructive and destructive 
interference depending on the phase value. Hence, Ramot et al. (2001) and Zhang et al. (2009) 
introduced several possibilities for calculating the complement, union, intersection, and other 
several properties for the phase term and amplitude term. 

2. PRELIMANIRIES 

Place In this section we recollect some relevant definitions and basic operations on fuzzy set, 
soft set, fuzzy soft set, complex fuzzy set, complex fuzzy soft set and fuzzyparameterisedsoft 
set. 
 
Definition 2.1 (Zadeh 1965) A fuzzy set  in a universe of discourse U is characterised by a 

membership function  that takes values in the interval  

 
Definition 2.2 (Ramot et al. 2001) A complex fuzzy set (CFS) S, defined on a universe of 
discourse U, is characterized by membership functions , that assign to any element 

 a complex-valued grade of membership in S. By definition, the values of , may 

receive all lying within the unit circle in the complex plane, and are thus of the form 
, where , each of  and  are both real-valued, 

and ( ) [0 ,  1]Sr x . 

The CFS S may be represented as the set of ordered pairs  
 . 

 
Definition 2.3 (Zhang et al. 2009) Let and be two CFSs on U, and 

and  their membership functions, 

respectively. The complex fuzzy union of and B, denoted by  is specified by a 
function 

 

 
 Definition 2.4 (Zhang et al. 2009) Let A and B be two CFSs on U, and 

and  their membership functions, 

respectively. The complex fuzzy intersection of and B, denoted by  is specified by a 
function 

. 
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Definition 2.5 (Zhang et al. 2009) LetA be a CFS on U, and its 

membership function. The complex fuzzy complement of A, denoted by  is specified by a 
function 

. 

 
Definition 2.6(Majiet al. 2001)Let U be an initial set and  be a set of parameters. Let 

denote the fuzzy power set of U, and let A pair is called a fuzzy soft set over U, where 
is a mapping given by . 

 
Definition 2.7 (Maji et al. 2001) The union of two fuzzy soft sets and over a 
common universe U is the fuzzy soft set  where and  

We write = . 

 
Definition 2.8 (Maji et al. 2001) Intersection of two fuzzy soft sets  and  over 
a common universe U is the fuzzy soft set where 

and and is written as 
. 

 
Definition 2.9 (Maji et al. 2001) The complement of a fuzzy soft set  is denoted by 

and is defined by ( , ) ( , ),cF A F A  where is a mapping given 
by  
 
Definition 2.10 (Nadia 2010) Let U be an initial set and  be a set of parameters. Let 

denote the complex fuzzy power set of U, and let A pair  is called a complex 

fuzzy soft set over U, where is a mapping given by . 

4.   
Definition 2.11 U be an initial universe, P (U) be the power set of U, 
E be the set of all parameters and X be a fuzzy set over E. An FP-soft set  on the universe U 

is defined by the set of ordered pairs 
 

where the function  is called an approximate function such that

 and the function  is called a membership 

function of FP-soft set  The value of  is the degree of importance of the parameter 

  
 
Definition 2.12  The complement of  denoted 

by  is an FP-soft set defined by the approximate and membership functions as 

 
 
Definition 2.13 man et al. 2011) Let  The union of 

denoted by  is defined by 
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Definition 2.14 The intersection 

denoted by  is defined by 

 

3. COMPLEX FUZZY PARAMETRISED SOFT SET 

 
We introduce the definition of a complex fuzzy parameterised soft set which is a generalisation 
of fuzzy parameterised soft set by extending the range of values of its membership function 
from the interval  to the unite circle in the complex plane. Also, basic operations are 

introduced. 
 

Formal definition  

In this section, we present the formal definition of complex fuzzy parametrized soft set. 
Also, complex fuzzy decision set of an CFP-soft set is constructed to desine a proper decision 
method. 
 
Definition 3.1.1. Let U be an initial universe, P(U) be the power set of U, E be the set of all 
parameters and X be a complex fuzzy set over E. A complex fuzzy parameterised soft set 
(CFPSS)  on the universe U is defined by the set of ordered pairs 

 
where the function  is called an approximate function such that 

 and the function  is called a 

membership function of complex FP-soft set . The value of  is the degree of 

importance of the parameter x in periodic time and depends on the decisio
requirements. 
The difference between our complex fuzzyparameterised soft set and the previous 
fuzzyparameterised  soft set of al. (2011) lies in the ability to get wider range of the 
degree of importance of x, by using the properties of complex numbers. 
 
Notes (1). Both the amplitude and phase terms may convey fuzzy information. Fuzzy 
information are characterized by a function from universe of discourse to [0, 1]. (Tamer et al. 
2011). 
(2).  In this research we denote the set of all CFPSS over U by CFPS(U). 
 
The new concept of complex fuzzyparameterised soft set is that the sets used in the definition 
and example above is complex fuzzysoft sets and fuzzyparameterized soft set, characterized by 
complex-valued membership functions, that given by Ramot et al. in (2002), 

, which allows us to use the properties of complex numbers, complex 
fuzzysoft sets and fuzzyparameterised soft set. 
We define complex fuzzy decision set of an CFP-soft set to construct a decision method by 
which approximate functions of a soft set are combined to produce a single complex fuzzy set 
that can be used to evaluate each alternative. 
 
Definition 3.1.2.  Let  A complex fuzzy decision set of 

XF , denoted by 

, is defined by 
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which is a complex fuzzy set over U, its membership function  is defined by 

,  

 

 

wheresupp(X) is the support  set of X. number of importance of parameter x.  is the 

crisp subset determined by the parameter  and  
 

 

 

4. BASIC OPERATIONS AND SOME RESULTS OF COMPLEX FUZZY 
PARAMETERISED SOFT SET 

. In this section, we introduce the concept of complement, union and intersection of a complex 
 definition for complement of 

fuzzy soft set and 
 

 
Definition 3.2.1.Let The complement denoted by  is a CFP-soft 

set defined by the approximate and membership functions as 
 

 
Definition 3.2.2. Let  The union of  denoted by 

is defined by 

 

where 

 

 
Definition 3.2.3. Let  The intersection of and ,X YF F denoted by 

is defined by 

 

where 
 

Proposition 3.2.1. Let Then  .=c
X

c

XF F  
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Proof : Trivial.
 
Proposition 3.2.2 Let Then 

    2.   3.  

 5.   6.  

Proof: Trivial. 
 
Proposition 3.2.3.Let  

 

 

Proof: Trivial. 
 
Proposition 3.2.4.Let  Then 

 

 

Proof: Trivial. 

5. Conclusion 

In this research, we find out the new concept of complex fuzzy parameterised soft set, Also, we 
introduce the basic theoretic operations on this new concept which are, union, intersection, and 
complement on complex fuzzy parameterised soft set. Some propositions and relations on and 
between these basic theoretic operations are introduced.  
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ABSTRACT  

Consider concentric circular arrays consisting of identical isotropic sensors. Concentric circular 
arrays preserve circular symmetry of the simple circular arrays, while increasing the number of 
spatial samples per each time instant. Direction of arrival (DOA) estimation is a key area of 
sensor array processing which is encountered in a broad range of important engineering 
applications. These applications include wireless communication, radar, sonar, among others. 
This paper investigates direction-finding estimation accuracy through Cramer-Rao bound 
derivation and analysis. It was observed that even with the same number of sensors, distributing 
them in a number of concentric circular arrays improves estimation accuracy. 

Keywords: array signal processing, direction of arrival estimation, direction finding, Cramer-
Rao bound 

1. INTRODUCTION 

Source direction-of-arrival (DoF) of the incoming signal from a single or multiple sources is an 
important technique in sensor-array signal processing[1] and refers to the problem of estimating 
polar-azimuth angles-of-arrival emanating from emitter(s); for example plane wave or multiple 

processing with a wide range of applications especially in the world of engineering. Some of 

surveillance, medical diagnosis, radio astrology, among others [1, 12]. 
Achievement of dire rocessing makes use of elements termed as 
antennas or sensors  either randomly distributed or arranged in the desirable geometric patterns 
which are either linear, planar or 3-dimensional. For instance, the already investigated sensor-
array geometries in DF include uniform linear array(ULA), uniform rectangular array(URA), 
uniform circular array(UCA), L-shaped array, regular tetrahedral array and circular concentric 

nding problems using different 

Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT), Cramer-Rao 
bound (CRB) among other techniques. For example considering a uniform circular array (UCA) 

6, 3]. 
Importantly, each geometry aforementioned has its own advantages in DF. However, circular 
and concentric geometries out-weigh the other geometries based on their wide range DF 
advantageous allowances. Among these merits include: they offer full rotational symmetry 

band and broad band beam-forming applications, they provide almost invariant azimuth 
angle coverage and they can also yield invariant array pattern over a certain frequency 
band for beam-forming in 3-dimensions [5]. 
Exceptionally, circular concentric arrays have a little more advantages some of which include: 

they yield smaller sidelobesinbeam-forming[16,14], 
providehigherangleresolutioncomparedtouniformcirculararraygeometries and requires less 
area for th
9, 5]. 

                                                           
* Corresponding author          
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Despite all the advantages of the circulararrays, they suffer from high side lobes in beam-
forming and thus a need arises to minimize/or reduce these side-lobes. Thus the strategy of 
increasing the number of rings is hereby employed to reduce the effect of side lobes. Therefore, 
the paper considers a multi-concentric ring array that preserves circular symmetry of the simple 
circular array, while increasing the number of spatial samples per each time instant and offers 

-Rao bound derivation and analysis. 
Finally, the paper is organized into six sections in which Section 1 is the introduction, Section 
2 presents the statistical data model, Section 3 gives review of the Cramer-Rao bound basics, 
Section 4 presents the Cramer-Rao bound derivation, Section 5 presents some special cases and 
Section 6 gives the conclusion. 

2. STATATISTICAL DATA MODEL 

Consider  circular arrays with the -th circular array of radius , and containing  isotropic 
sensors uniformly arranged on the circumference for . Let  and 

  for all . See Figure 1. 

 
 

Figure 1: An N-lingth Multi-Concentric Circular Array. 
 
 
The location of the  sensor on the  radius circular array is given by 

 

for  
 
Let  and  be the elevation and azimuth angles, respectively, of a source 
with an incident wavelength . Then, the array mainifold vector is given as 

 

where 

 (3) 
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Consider a collected dataset , where is the time index and 
 (4) 

is a  and  is a  vector modelled as a complex-valulued zero-mean 
additive white Gaussian noise (AWGN) with a prior known variance of  and  is a scalar 
incident signal modelled as a white Gaussian complex-value random sequence with a prior 
known variance of . The noise, is white both across time  and across space 
(i.e across the components in the  elements of each vector  ). 
 

3. REVIEW OF CRAMER-RAO BOUND BASICS 

Let 
 (5) 

be the dataset representing  number of discrete-time samples. In Eq. (5), superscript Tdenotes 
transposition,  denotes the Kronecker product and 

 
 

 
Collect the two to-be-estimated scalar parameters as entries of the  vector . The 
fisher information matrix (FIM),  has a (k,r)-th entry equal to (see Eq. (3.8) on page 72 of 
[4]) 
 

 (6) 

 
where Re{·} signifies the real-value part of the entity inside the curly brackets, Tr{·} denotes 
the trace of the entity inside the curly brackets, the superscript Hindicates conjugate 
transposition.  
 

 
 (7) 

 (8) 

 
where E[·] represents the statistical expectation of the entity inside the square brackets and 

symbolizes an identity matrix of size . 

 

Because is functionally independent of both and , as shown in Eq. (8), the second term 
of Eq. (6) equals zero. Eq.  (6) may be simplified to 

 

,  

where 

 

 

.  
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1. Hence

. (9) 

 
The Fisher information matrix equals 

 (10) 

 
the inverse of which gives Cramer-Rao bound of  and : 

 (11) 

 

The Cramer-Rao Bound Derivation 

From Eq. (2), we have  
 

, (12) 

where 
 

, (13) 

. (14) 

In Eq. (13) and Eq. (14), denotes the Hadamard product. 
 
From Eq. (12)-Eq. (14): 
 

 

 (15) 

 

 

, (16) 
 

 

 . (17) 
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Using Eq. (15)- Eq. (17) in Eq. (9), we have 

, (18) 

, (19) 

. (20) 

 
Using Eq. (18)- Eq. (20) in Eq. (11), we have 

 (21) 

 (22) 

 
 

Special Cases 

A Single Circular Array 
 
From Eq. (21)- Eq. (22): 

 (23) 

 (24) 

 
These results agree with the results obtained in [8, 6, 3, 11]. 
 
A 2-Circle Array 
From Eq. (21)- Eq. (22): 
 

 (25) 

 (26) 

 
These results agree with the results obtained in [11]. 
 
Equal Angular Spacing 
To maintain equal angular spacing between any two consecutive sensors in each circular 
array, let  and . Then fromEq. (21)- Eq. (22): 
 

 (27) 

 (28) 

 
Eq. (27)- Eq. (28) can be re-expressed as 

 (29) 

 

 (30) 
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rings for the concentric circular arrays, we will consider an equal number of sensors. As an 
example, let the total number of sensors be considered be 60. In addition, let  
 
A Single Circular Array 
From Eq. (29)- Eq. (30) and using  and , we have 

 (31) 

 

 (32) 

 
A 2-Circle Array 
From Eq. (29)- Eq. (30) and using  and , we have 
 

 (33) 

 

 (34) 

Eq. (33)- Eq. (34) corresponds to  and  
 
A 3-Circle Array 
From Eq. (29)- Eq. (30) and using  and , we have 
 

 (35) 

 

 (36) 

Eq. (35)- Eq. (36) corresponds to  and  
 
A 4-Circle Array 
From Eq. (29)- Eq. (30) and using  and , we have 
 

 (37) 

 

 (38) 

Eq. (37)- Eq. (38) corresponds to 
 and  

 
It is clear from Eq. (31)- Eq. (38), that even with the same number of sensors, distributing 
them in a number of concentric circular arrays improves estimation accuracy. 

4. CONCLUSION 

A multiple number of concentric circular sensor array grid referred here as multi-concentric 
circular array has been proposed. The direction-of-arrival estimation accuracy using such a 
multi-concentric circular array grid has been analytically determined through Cramer-Rao 
bound derivation. It has been observed that the Cramer-Rao bound decreases with increase in 
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the number of concentric arrays while maintaining the same number of sensors. This 
observation would help direction finders to economically utilize a given number of sensors. 
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ABSTRACT 

In this paper, based on some famous previous conjugate gradient methods, a new hybrid 
conjugate gradient coefficient was proposed for unconstrained optimization. The proposed 
parameter  is computed as a combination of  (Hestenes-Steifel formula),  (Liu 
storey formula) and  (Rivaie formula) to exploit attractive features of each. The algorithm 
uses the exact line search. Numerical results and their performance profiles are reported which 
show that the proposed method is promising. The numerical results also have shown that the 
new formula for   performs far better than the original Hestenes-Steifel, Liu storey and the 
Rivaie methods. 
 

Keywords: Hybrid conjugate gradient method; exact line search; unconstrained optimization. 

1. INTRODUCTION 

 
Conjugate gradient methods (CGMs for short) are very efficient for solving large-scale 
unconstrained optimization problem, especially when the dimension n is large. CGMs have 
been mainly designed for solving problems in the following form: 
  (1) 

 Is continuously differentiable function, the form of iterative method to 
solve unconstrained optimization problem is given by 
    k= 0, 1, 2 (2) 

Where   is the current iterate,  is the positive step size achieved by carrying out a one 

which is  
  (3) 

 and  is the search direction defined by 

  (4) 

where   a parameter and  is the gradient of    at  . 
In the linear CGMs or nonlinear CGMs the parameter  is called conjugate gradient 

coefficient [27]. Different choices of   will yield different CG method. Table 1 arranges a 
sequential list of some choices for the well-knwon CG parameter. 
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Table 1. Various choices for the classical CG parameter    

                    (Hestenses Stiefel [13], 1952)  (5) 

                                (Fletcher Reeves [11], 1964)  (6) 

                     (Polak-Ribiere Polyak [21, 22], 1969) (7) 

                               (Conjugate Descent [10], 1987)  (8) 

                           (Liu storey [19], 1991)  (9) 

                          (Dai Yuan, [6], 1999) 

 (10) 

There are frequent research on convergence properties of these methods (see Zoutendijk 
[27], Powell [23], Z.Wei  [25], Zhi- Feng Dai [5], Al-Baali [2], Min Li [18] and Dai and Yuan 
[7]).  

For non-quadratic objective functions, the global convergence property of FR method was 
proved [11, 27], when Strong Wolfe line search was used. The PRP method has no global 
convergence under some traditional line searches. Some convergent versions were proposed by 
using some new complicated line searches, or through restricting the parameter to a nonnegative 
number [18]. The CD method and DY method were proved to have global convergence under 
Strong Wolfe line search [5, 25]. However, to the best of our knowledge, the global 
convergence of PRP, LS and HS methods have not been established under all mentioned line 
searches. The main reason is that many CGMs cannot guarantee the descent of objective 
function values at each iterative.  

In the latest years, based on the above formulas and their hybridization, many works putting 
effort into seeking for new CGMs with not only good convergence property but also excellent 
numerical effect were published. Nazareth [20] regarded the FR, PRP, HS, and DY formula as 
the four leading contenders for the scalar  and proposed two parameter family of conjugate 
gradient method. Wei et al [25], proposed a variation of the FR method which is called the VFR 
method.Hai Huangm, et al [16] modified LS,Zhi- Feng Dai [5] modified HS and Zhang 
extended the result of the HS [17] method and proposed the NHS method.Another famous CG 
method is the RMIL method, denoted by the name of the researchers: Rivaie, Mustafa, Ismail 
and Leong [24]. Its CG coefficient is written as 

(11) 

Some well-known CGMs have strong convergence property like FR, DY, and CD, but they 
may not perform well. Others like PRP, HS, and LS may not converge but they perform well. 
So hybrid CGMs has been devised to use and combine the attractive features of the well-known 
conjugate gradient algorithms.This reason leads Powell [23] to modify the PRP method.By the 
same motivations, Touati-Ahmed and Storey [1] extend AL-
the FR method.DY,Dai and Yuan [7]  propose a family of globally convergent conjugate 

parameter  is computed as a convex combination of    and  .Hu and Storey [15] 
suggest the formula 

  (13) 
Gilbert and Nocedal [12] extend (13) and propose the formula 

  (14) 
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Recently Xiao Xu and Fan-yu Kong [26] make a linear combination with parameters of 
the DY method and the HS method.More recently Yasir [28] proposed a new hybrid CG similar 
to WYL. 

2. NEW HYBRID CG METHOD 

During the last years, much massive conducted effort has been committed to develop new 
modifications of CGMs, as we mention before, which do not only possess strong convergence 
properties, but they are also computationally superior to the classical methods. As result to that 
hundreds of variants Conjugate Gradient algorithms have been confirmed. A survey including 
40 nonlinear Conjugate Gradient algorithms for unconstrained optimization is given by Andrei 
[4]. 

In this section, enlightened by above-mentioned ideas [12, 13], we suggest our   which 
named as  . Where  

  (15) 

The algorithm is given as follows: 
 
Algorithm 1  
Step 1: Initialization. Given   set   if     then stop. 
Step 2: Compute    byEq. (3). 
Step 3: Let   if     then stop. 
Step 4: Compute   by (15), and generate   byEq. (4). 
Step 5: set   go to Step 2. 

Global convergence properties 

In this section, the convergent properties of   will be studied. We only show the result of 
convergence for common CG method. To verify the convergence, we assumed that every search 
direction  should fulfill the descent condition 
  (16) 

for all . 
 If there exist a constant  for all  then, the search directions satisfy the following 

sufficient descent condition 
  (17) 

The following Theorem is very essential in establishing sufficient descent condition. 
 

Theorem: Consider a CG method with the search direction (4) and  given as 
(15) then condition (17) holds for all . 
 

Proof. If   then it is clear that  . Hence, condition (17) holds 
true. We also need to show that for    , condition (17) will also hold true. 
From (4), multiply both sides by  , we obtain 

 
 

For exact line search, we know that . Thus, 
 

Therefore, it implies that  is a sufficient descent direction. Hence,  
 

holds true. The proof is completed . 
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3. NUMERICAL RESULT AND DISCUSSION  

In order to check the efficiency of , we compare  method with all classical methods  
. Table 2 shows the computational performance of R2015a MATLAB program on a set of 
unconstrained optimization test problems. We select randomly 25 test functions from Andrei 
[3] 

In this test, we choose  and stopping criteria is set to  as Hillstron [14] 
recommended. Three initial points are chosen starting from a point closer to the solution point 
to a point far away from the solution point, so that it can be used to test the global convergence 
of the new CG coefficient. The dimensions n of 25 problems are 2, 4, 10, 100,500 and 1000. 

In some cases, the calculations blocked due to the failure of the line search to find the 
positive step size, and thus it was considered as a fail. Numerical results are compared 
comparative to the number of iteration (NOI) and CPU time. We use the performance profile 
presented by Dolan and More [9] to get the performance results that shown in Figure 1, Figure 
2, Figure 3 and Figure 4. 

The CPU processor used was Intel (R) Core TM i3-M350 (2.27GHz), with RAM 4 GB.  

Table 2. List of Problem Functions 

NO Function Dim Initial point 

1 SIX HUMP CAMEL 2 (-1,-1), (3,3), (50,50) 
2 TRECCANI 2 (0.5,0.5),(15,15),(150,150) 
3 ZETTL 2 (-2,-2),(0.3,0.3),(5,5) 
4 QUARTIC 4 (10,..,10),(50,..,50),(100,..,100) 
5 EXTENDED HIMMELBLAU 4 (-4,..,-4),(-1.5,..,-1.5),(1,..,1) 
6 EXTENDED MARTOS 10 (-2,..,-2),(0.5,..,0.5),(2,..,2) 
7 QUADRATIC  QF2 100,500,1000 (1,..,1),(15,..,15),(60,..,60) 
8 GENERALZED QUARTIC 100,500,1000 (-0.5,..,-0.5),(1,..,1),(6,..,6) 
9 WHITE AND HOLST 100,500,1000 (-2,..,-2),(2,..,2),(9,..,9) 

10 FLETCHCR 100,500,1000 (-4,..,-4),(3,..,3),(11,..,11) 
11 ROSENBROCK 100,500,1000 (5,..,5),(25,..,25),(30,..,30) 
12 EXTENDED DENSCHNB 100,500,1000 (1,..,1),(16,..,16),(25,..,25) 
13 EXTENDED BEALE 100,500,1000 (0.5,..,0.5),(2,..,2),(11,..,11) 
14 EXTENDED TRIDIAGONAL 100,500,1000 (3,..,3),(9,..,9),(50,..,50) 
15 DIAGONAL4 100,500,1000 (0.2,..,0.2),(60,..,60),(200,..,200) 
16 SUM SQUARES 100,500,1000 (-1,..,-1),(60,..,60),(150,..,150) 
17 SHALOW 100,500,1000 (0.2,..,0.2),(3,..,3),(30,..,30) 
18 PERTURBD QUADRATIC 100,500,1000 (0.5,..,0.5),(2,..,2),(12,..,12) 
19 DIXON AND PRICE 100,500,1000 (0.2,..,0.2),(0.4,..,0.4),(16,..,16) 
20 QUADRATIC QF1 100,500,1000 (1.5,..,1.5),(5,..,5),(20,..,20) 
21 NONDIA 100,500,1000 (3,..,3),(7.5,..,7.5),(50,..,50) 
22 DQDRTIC 100,500,1000 (10,..,10),(60,..,60),(100,..,100) 
23 SINQUAD 100,500,1000 (4,..,4),(20,..,20),(60,..,60) 
24 GENERALIZED QUARTIC GQ2 100,500,1000 (0.5,..,0.5),(15,..,15),(25,..,25) 
25 EXTENDED QUADRATIC PENALTY QP2 100,500,1000 (1,..,1),(10,..,10),(50,..,50) 

 
 

In [9] Dolan and More offered a model to evaluate and compare the performance of the set 
solvers  on a test set . Assuming  solvers and   problems exists, for each problem  and 
solver , they defined 

 = computing time (NOI. or CPU time) required to solve problems  by solver . 
Wanting a standard form for evaluations, they compared the performance of problem  by 

solver  with the best performance for any solver to the same problem using the performance 
ratio 

 

Assume that a parameter    is selected, and    if and only if solver  
does not solve problem . The performance of solver  on any given problem might be of 
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concern, but because we would like to achievement an overall valuation of the performance of 
the solver, then it was defined 

Thus is the possibility for solver  that a performance ratio   was within a factor 
  of the best possible ratio. Then, function  is the cumulative distribution function for the 

performance ratio. The performance profile for a solver was a non-decreasing, 
piecewise, and continuous from the right. The value of is the possibility that the solver 
will earn over the rest of the solvers. In general, a solver with high values of or at the top 
right of the figure is superior or signify the best solver. 

 

 
 

   Figure 1: Performance profile based on NOI 
 
 

 
 

                                          Figure 2: Performance profile based on NOI 
 
 

.   
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Figure. 3: Performance profile based on CPU time 

 
 

 
Figure. 4: Performance profile based on CPU time 

 
Figures show the performance profile of all methods we used based on NOI and CPU time.All 
figures illustrate that  perform better than the other methods, since it can solve almost all 
of the test problems and reach 99% percentage. Comparing with DY, FR, CD, PRP, HS, LS 

given test problems. To sum up, our numerical results propose a new efficient conjugate 
gradient method. 

CONCLUSION  

In this paper, the resecher have studied a new hybrid method for solving unconstrained 
optimization. Hedisplayed that the new method fulfills the sufficient descent condition under 
exact line search. The outcome of the numerical tests shows that the given method is modest 
when compared to other CGMs. In future, testing this new method under different search rules 
is recommended.  

ACKNOWLEDGMENT  

The Author would like to thank ZARQA UNIVERSITY and the (IACMC2019) 
ORGANIZING COMMITTEE for funding this study. We are also grateful to UNISZA for their 
considerations and comments. 



62 
 

REFERENCES 

D. T. Ahmed, C. Storey, Efficient hybrid conjugate gradient techniques. Journal of Optimization Theory and 
Applications (1990), 64(2), 379-397. 

M.  AL-Baali, Descent property and global convergence of Fletcher-Reeves method with in exact line search .IMA 
J. number (1985).Anal,5 :121-124 . 

N. Andrei, An unconstrained optimization test functions collection, Advanced Modeling and Optimization, 10 
(2008), 147-161. 

N. Andrei, 40 conjugate gradients algorithms for unconstrained optimization, Bull. Malay.    Math. Sci. Soc. 34 
(2011) 319 330 

Z. F. Dai, Two modified HS type conjugate gradient method for unconstrained optimization problems, Nonlinear 
analysis 74 (2011) 927- 936. 

Y. Dai and Y. Yuan, Anon linear conjugate gradient with strong global convergence properties, SIAM J.optim .10 
(2000) 177-182. 

Y. Dai and Y. Yuan, A class of globally convergent conjugate gradient methods. Science in China Series A: 
Mathematics (2003), 46(2), 251-261 

methods. Filomat (2017), 31(6), 1813-1825. 
E. D. Dolan and J. J. Mor, Benchmarking optimization software with performance profiles, Mathematical 

Programming, 91 (2002), 201-213. http://dx.doi.org/10.1007/s101070100263. 
R.Fletcher, practical method of optimization, second ed vol.1: Unconstrained optimization, Wiley, new York, 1997. 
R.Fletcher ,C.Reeves , Function minimization by conjugate gradient ,comput .J .7(1964)149-154. 
J. C. Gilbert, And J. Nocedal, Global convergence properties of conjugate gradient methods for optimization. SIAM 

Journal on optimization (1992)., 2(1), 21-42. 
M. R. Hestenes and E. Stiefel, Method of conjugate gradient for solving linear equation, J.Res. Bur. 

stand.49(1952)409-436. 
K. E. Hillstrom, A simulation test approach to the evaluation of nonlinear optimization algorithms, ACM 

Transactions on Mathematical Software 3 (1977), 305-315. http://dx.doi.org/10.1145/355759.355760. 
Y. F. Hu and C. Storey, Global convergence result for conjugate gradient methods. Journal of Optimization Theory 

and Applications (1991), 71(2), 399-405. 
H. Huangm, et al ,the proof of the sufficient  descent condition of the Wei-Yao-Liu conjugate gradient method under 

the strong Wolf-Powell line search ,Appl.math.comput.189(2007)1241-1245. 
Z.  Li, New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for 

optimization. Computational & Applied Mathematics 28 (2009), no. 1. 
M. Li and  H. Feng , A sufficient descent LS conjugate gradient method for Unconstrained optimization problem 

,Appl,math.comput 218 (2011) 1577-1586 . 
Y. Liu and C.Storey, Efficient generalized conjugate gradient algorithms , part 1:theory, J.optim.theory 

Appl.69(1992)129-137. 
J. L. Nazareth, Conjugate gradient methods. Enciclopedia of Optimization, C. Floudas and P. Pardalos (1999). 
B.T. Polyak,the conjugate gradient method in extreme problem ,USSR.comp.math.phy.9(1969)94-112. 
E. Polak and G. Ribiere, Note surla convergence de directions conjugate ,Rev.Francaise Informat Recherché 

operation elle, 3e Annee 16(1969)35-43. 
M. J.  Powell, Nonconvex minimization calculations and the conjugate gradient method. In Numerical 

analysis(1984), (pp. 122-141). Springer, Berlin, Heidelberg. 
M. Rivaie and M. Mamat ,New conjugate gradient coefficient for large scale  nonlinear Unconstrained optimization 

,Int.J.math.Analysis,vol.6,2012,no.23,1131-1146. 
Z. Wei, G.li and L.Qi, New nonlinear conjugate gradient formula for large scale Unconstrained optimization 

problem,App.math.comput.179(2006)407-430. 
X. Xu and F. Y . Kong, New hybrid conjugate gradient methods with the generalized Wolfe line search. SpringerPlus 

(2016), 5(1), 881. 
G. Zoutendijk, Nonlinear programing computational methods, in: Abadie J. (Ed.) Integer and nonlinear programing, 

North Holland, Amsterdam, 1970. 
Y. Salih. "New Hybrid Conjugate Gradient Method with Global Convergence Properties for Unconstrained 

Optimization." Malaysian Journal of Computing and Applied Mathematics 1, no. 1 (2018): 29-38. 
 

  



63 
 

ON SECOND ORDER PERTURBED STATE-DEPENDENT SWEEPING 
PROCESS 

      

Mathematics Department, LMPA Laboratory, Jijel University,Ouled Aissa, Jijel, 18000, Algeria 
E-mail:    affanedoria@yahoo.fr  

 
Mathematics Department, LMPA Laboratory, Jijel University,Ouled Aissa, Jijel, 18000, Algeria 

E-mail:  mfyarou@yahoo.com 
 

 

ABSTRACT  

Using a discretization approach, the existence of solutions for a class of second order differential 
inclusion is stated. The right hand side of the problem is governed by the so-called nonconvex 
state-dependent sweeping process and contains an unbounded perturbation, that is the external 
forces applied on the system. Thanks to some recent concepts of set's regularity and nonsmooth 
analysis, we extend existence results for nonconvex equi-uniformly subsmooth sets. The 
construction is based on the Moreau's catching-up algorithm. We give an application to the 

 

Keywords: Differential inclusion; nonconvex sweeping process; subsmooth sets; unbounded 
perturbation  

1. INTRODUCTION 

The perturbed second order state-dependent nonconvex sweeping process is an evolution 
differential inclusion governed by the normal cone to a mobile set depending on both time and 
state variables, of the following form: 
 

                    (P)  

 
where  denotes the normal cone to Q(t, v(t)) at the point  u(t), the sets Q(t, v(t)) 
are nonconvex in H and F : [0, T ] × H × H  H  is an upper semicontinuous convex valued 
mapping playing the role of a perturbation to the problem, that is an external force applied on 
the system. This kind of problems was initiated by J.J. Moreau  (see [14])  for time-dependent 
sets Q(t) and 0} to deal with problems arising in elastoplasticity, quasistatics, electrical 
circuits, hysteresis and dynamics. Since then, various generalizations have been obtained, see 
for instance [4-9, 16-18] and the references therein.  
When the moving set Q depends also on the state, one obtain a generalization of the classical 
sweeping process known as the state-dependent sweeping process.  Such problems are 
motivated by parabolic quasi-variational inequalities arising e.g. in the evolution of sandpiles, 
and occur also in the treatment of 2-D or 3-D quasistatic evolution problems with friction, as 
well as in micro-mechanical damage models for iron materials with memory to describe the 
evolution of the plastic strain in presence of small damages. We refer to [12] for more details. 

, Ibrahim 
and Yarou [9] provided an approach to prove the existence of solution to (P). The approach is 

-up algorithm.  For recent results in the study of state-dependent 
sweeping process, we refer to [1], [2], [11]. 
 
Our aim in this paper is twofold: using some recent concepts of set's regularity, we show how 
the approach from [9] can be adapted to yield the existence of solution for (P) with the general 
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class of equi-uniformly subsmooth sets Q(t, x). Moreover, we weaken the usual assumptions on 
the perturbation by taking F unnecessarily bounded and without any compactness conditions. 

2. NOTATION AND PRELIMINARIES:  

We denote by B the unit closed ball of the Hilbert space H, ([0, T ])  the Banach space of 

a nonempty closed subset S of H, we denote by d(·, S) the usual distance function associated 
with S, (u) the projection of u onto S defined by (u) = {y  S : d(u, S) = }. 
We denote by co(S) the closed convex hull of S, characterized by co(S) = {x H: H, 

 stands for the support funct  H. 
Recall that for a closed convex subset S, we have d(x,S) = [
S is said to be relatively ball compact, if for any closed ball B(x, r) of H,the set B
relatively compact.  
If is a locally-Lipschitz function defined on H, the Clarke subdifferential (x) of at x is 
the nonempty convex compact subset of H, given by  

(x) =  H: ( x; v)  , v  H },  

where (x; v) = is the generalized directional derivative of 

at x in the direction v (see [10]). The Clarke normal cone  (S, x) to S at x  S is defined by 
polarity with that is, (S, x) =  H:  0, v }, where denotes the Clarke 
tangent cone and is given by = {v  H: (x, S; v) = 0}.  
A vector v  H is said to be in the Fréchet subdifferential (x) of at x (see [15]) provided 
that for every 0, there exists 0 such that for all y  B( )  

 (y)  (x) + . 
It is known that, we have always (x)  (x), and for all x  S, (S, x) (S, x) 
and d (x, S) =  (S, x) B.  Another important property is that, whenever y (x),one 
has   (S, y)  (S,y). 
 

H x 0 there 
exists 0 such that  

 ,    (1) 
whenever ,  B( )  ( , ) B, i = 1,2. 

. every 
>0 there exists 0, such that (1) holds for all ,  satisfying  and all  

 ( , ) B. 
Definition 2.1 Let  be a family of closed sets of H with parameter q  Q. This family 
is called equi-

 Q, the inequality (1) holds, for all ,  S(q) satisfying  
( , ) B, i = 1,2. For the proofs of the next proposition, we refer the reader to [3] and 
[19].  
Proposition 2.2 Let {C(t, v) : (t, v)  [0, T]×H} be a family of nonempty 
closed sets of H which is equi-uniformly subsmooth and let a  
Assume that there exist real constants > 0 and > 0 such that, for any x, y, u, v  H and s, t 

 [0, T]  
 + . 

Then the following assertions hold:  
(a) For all (s, v; y)  Gph(C), we have   ;  
(b) Th satisfies the upper 
semicontinuity property: For any sequence (  in [0, T] converging to s, any sequence 
( converging to v, any sequence ( converging to y  C(s, v) with (  C( , ), and 

 H, we have  
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 C( ,  

3. MAIN RESULT  

Theorem 3.1 Let Q : [0, T]×H  H be a set-valued mapping with nonempty values satisfying: 
( ) the family {Q(t, x); (t, x)  [0, T] × H} is equi-uniformly subsmooth; 
( )  for any bounded subset A  H, the set Q([0, T] × A) is relatively ball compact;  
( )  there are real constants > 0, and > 0, such that for all t, s [0, T] and , ,  H   

|d( , Q(t, , Q(t,   +  +  . 
Let F : [0, T] × H × H  H be an upper semicontinuous set-valued mapping with nonempty 
closed convex values such that:  
(  x  + y ). 
Then, for every (a, b)  H × H with a  Q(0, b) there exists a Lipschitz 
continuous solution (u, v) to (P). 
Proof.  
Step 1: for each (t, x, y) [0, T] × H × H, denote by m(t, x, y) the element of minimal norm of 
the closed convex set F(t, x, y) of H, that is m(t, x, y) =  (0). For every 1, we 

consider a partition of [0, T] by the points = k , = , k = 0,1,2, ..., n. 

Starting from  = a Q(0, b) = Q( , ) and taking (  m( , 
)) thanks to the ball compactness of the set Q( , ), let define inductively the 

sequences and  satisfying  
 Q( , )                                                          (2) 

(  m( , ))                                    (3) 

 =  +                                                         (4) 
   +   + 2 m(  ,  , )  

    
and  

  + 2  (1 + ))T + )        
   

   +  + 2  (1 +  .                  (5) 

 Step 2:  construction of approximate solutions (·) and (·). For any  t    [ , ],   
k  

(t) =  )  
and  

(t) = + .                                              

Thus, for almost all t [ ], (t) = and  

(t)    + m( , )                                        
Using the notations  

(t)  =        and  (t)  =   

We can write 

(t)  + m( (t), )         
for a.e. t [0, T]. Obviously, for all 1 and for all t [0,T], the following hold:  

 m( (t),  (1+  

) 

(t) = b + ds,  t [0, T ].     
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Thanks to the ball compactness as Theorem, ( (·)) is relatively 
compact in ([0, T ]), so we can extract from it a subsequence, that we do not relabel, which 
converges uniformly to some mapping u(·) ([0, T ]). By the inequality (5) there exists a 
subsequence (again denote by) ( (.) ) which converges ( ([0, T ]), ([0, T ]) ) in 

([0,T]), to with  t [0,T].  
Putting m( (·), ) = ( (·)),( (·)) is bounded, taking a subsequence 
if necessary, we may conclude that ( (·)) converges ( ([0, T ]), ([0, T ]) ) to some 
mapping f ([0,T])  with f(t)   
Step 3:  and Proposition 2.2, we can 
conclude that  

(t)    +   f(t)   a.e.   t  [0, T ] 
                                    f(t)  F (t, u(t), v(t))       a.e.   t  [0, T ].                                    

 
 

4. APPLICATION  

As an application, let consider the antiplane frictional contact problem, the friction being 
process is the following: 

   Find a displacement field u × [0, T] R such that 
 

in          ×

on        ×
on        ×

×

in           

We refer to [13] for the physical interpretation and the following variational formulation of the 
problem:  
Find such that a.e.  and

where a(·, ·) and b(·, ·) : R are two real continuous bilinear and symmetric forms. 
See also [1] for a similar problem. Following [1], one proves the equivalence between this 
variational inequality and the perturbed state-dependent sweeping process. 
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ABSTRACT  

Finding the solution of the equation f(x)=0 when f(x) is nonlinear is very important, as like this 
equation resulting out from many real life problems and applied sciences. Many iterative 
methods were proposed to solve nonlinear equations. These methods can be compared using 
different ways, for example; their convergence order, number of functions needed to be 
evaluated in each iteration, number of iterations needed for convergence, the CPU time required 
to achieve the accuracy needed, and efficiency index. In this work we use another way called 
the basins of attraction of the method. We consider six different methods of different orders and 
graph the attraction basins of the roots of several polynomials. Finally, we clarify the answer to 
the question: are the optimal methods always good for finding the solution of the nonlinear 
equations? 

Keywords: Basin of attraction; Nonlinear equations; Iterative methods 

1. INTRODUCTION 

Let  be nonlinear, solving the equation  has been studied very widely, see for 
example [3-5,7] and the references therein. Besides, one of the most common ways to compare 

the efficiency of iterative methods is the efficiency index which can be determined by , where 
 is convergence order of the iterative scheme and  represents number of functions needed to 

be found at each iteration. Kung and Traub[2] mentioned a conjecture says that the iterative 
scheme with number of functional evaluations equals  is optimal if its order of convergence 
equals . There are many ways to compare the efficacyof the iterative methods. The 
attraction basins for complex Newton's method firstly considered and attributed by Cayley[1] 
is a method to illustrate how different starting points affect the behavior of the function. In this 
way, we can compare different root finding methods by their area of convergence shown by the 
attraction basins of the roots. Based on that, the iterative method is better if it has larger area of 
convergence. Stewart [6] compared Newton method, Halley's method, Popovski method, and 
Leguerre method by showing the attraction basins of the zeros found by the methods. Many 
researchers have compared different orders iterative methods for finding multiple zeros when 
their multiplicity is known.  
    In this work we compare six different iterative methods by illustrating their attraction basins. 
Three of the compared iterative techniques are optimal. We try to answer the question: are the 
optimal schemes always good for solving nonlinear equations? The work in this study is divided 
as follows: we illustrate some definitions and preliminaries in Section 2. In Section 3, the basins 
of attractions were used to compare six different iterative methods on some polynomials. 
Eventually, the conclusion given in Section 4. 

2. PRELIMINARIES 

 

                                                           
* Corresponding author          
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of basins of attraction.

 If , then  is called a fixed point. For  , where  is the Riemann sphere, 
we define its orbit as orb , where  is the  
iterate of .  is called a periodic point of period  if  is the smallest number such that 

. If  is periodic of period  then it is a fixed point for . A point  is 
said to be attracting if , repelling if , and neutral if 

. Moreover, if the derivative is zero then the point is called super-attracting. 

 The Julia set of a nonlinear function , denoted by , is the closure of the set of 
its repelling periodic points. The complement of  is called the Fatou set . If  is an 
attracting periodic orbit of period , we define the basin of attraction to be the open set 

 consisting of all points  for which the successive iterates  
converge towards some point of . In symbols, we can define the basin of attraction for any 
root  of  to be . The basin of attraction of a periodic orbit 

may have infinitely many components. It can be said that basin of attraction of any fixed 
point tend to an attractor belonging to Fatou set, and the boundaries of these basin of 
attraction belongs to the Julia set. While an  order complex polynomial with distinct roots 
partitions the complex plane into  number of basins, the partitions may or may not be 
equally distributed or even connected for that matter. In an ideal setting, these attracting 
regions resemble a Voronoi diagram showing all points that are the nearest neighbors to the 

 

3. NUMERICAL EXAMPLES 

 In this section we will compare various root finding methods by visualizing the basins 
of attraction of their zeros. All examples are about polynomials with roots of multiplicity 
one. We will consider six methods of different orders of convergence. Two of them were 
considered by Stewart [6]. The methods we consider with their order of convergence are: 

It is of order two, and given by . 

It is of order three, and it is given by 

. 

It is a two step method of order four, given by 

 

4.  Xiaofeng-Wang Method (XW): It is of order four method of three steps [8], for 
 the method is given by 
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where  . 

5.  MBM Method: It is an optimal three steps iterative method of order [3]. For  
the method is given by 

 

where , and  . The first two steps of this method represents the well-

 

6.  Srivastava Method (SM): It is a method of order [5]. The method is given by 

 

In the following are examples of different polynomials with different coefficients of 
different orders, we will plot the basins of attraction of the roots of these polynomials using 
the methods mentioned above.In all examples, a 4 by 4 square region is centered at the origin 
covering all the zeros of the tested polynomials. 

A 400 400 uniform grid in the square is taken to unfold initial points for the iterative 
methods via basins of attraction. Each grid point of a square is colored according to the 
iteration number for convergence and the root it converges to. The exact roots were assigned 
as a black points on the graph. The appearance of darker region shows that the method 
requires a fewer number of iterations.All calculations have been performed on intel Core i7-
3770 CPU @3.40 GHz with 4GB RAM, with Microsoft Windows 10, 64 bit based on X64-
based processor. The software used to do the graphs is Mathematica 9. 
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Example 3.1Consider the polynomial  which has roots , 
.The basins of attraction for each root were illustrated in Figure1. As it can be 

ile MBM and SM methods show more chaos. 

 

Figure 1. The basins of attraction of the roots of the polynomial . 
The top row from left to right: Newton's, Halley's, Jarratt's.  

The below row fromleft to right: XW, MBM and SM methods. 

Example 3.2 The second example is the polynomial  which has four 

simple real roots 
and XW methods give better results than MBM method. The worst result was for SM 
method where a lot of black (Divergent) points appeared. 

 

Figure 2: The basins of attraction of the roots of the polynomial . 

The top row from left to right: Newton's, Halley's, Jarratt's.  
The below row fromleft to right: XW, MBM and SM methods. 
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Example 3.3 The four roots of unity polynomial   has the roots 

area of convergence, followed by 
SM  methods show more divergent points. 

 

Figure 3: The basins of attraction of the roots of the polynomial . 
The top row from left to right: Newton's, Halley's, Jarratt's.  

The below row fromleft to right: XW, MBM and SM methods. 

Table 1 presents the CPU time needed to obtain the basins of attraction of the roots of 
the examples considered. It is clear that there is a relation between the CPU time and the 
chaos in the graph, that is, less time tends to larger area of convergence and less chaos, and 
vice versa. 

Table 1: CPU time needed in seconds. 

Method    

Newton 6.69 7.52 7.88 

Halley 5.61 6.5 6.2 

Jarratt 5.63 6.53 6.44 

XW 19.89 6.83 21.39 

MBM 23.8 59.94 58.06 

SM 31.98 34.14 48.45 

 

3.1. How good are optimal methods for nonlinear equations? 

According to the conjecture of Kung and Traub[2], from the six compared iterative methods 
mentioned above, we have three optimal methods, Jarratt, XW, and MBM methods. Its clear 
from the basins of attraction of these methods that if the iterative method is optimal then it is 
not essential that it has better attraction basins (larger area of convergence), see MBM attraction 
basins in all examples. Also, if two optimal methods are of the same order, then its not necessary 
that they have the same basins of attraction. Both Jarratt's method and XW method are optimal 
of order four, but Jarratt's method is look like that it has larger area of convergence than XW 
method. Note that although Jarratt's method and XW method have very close basins of 
attraction in most examples above, but the CPU time needed to draw their basins of attraction 
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Based on what we mentioned above we  can answer the following question: Are the 
optimal methods always better for solving nonlinear equations than other methods? The 
answer is clearly No. Even the optimal methods need less functional evaluations in each 
iteration, but its clear from the basins of attraction in the previous examples that sometimes 
optimal methods show a lot of chaos, which means number of divergent points is greater 
some times in optimal methods than other non-optimal methods. One can conclude that 
number of functional evaluations in each iteration is not the only factor that confirm the 
efficiency of the iterative technique, there are other factors that affect also, like number of 
steps in the iterative scheme, order of convergence, and number of arithmetic operations 
needed at each iteration. 

4. CONCLUSION 

In this paper we have considered six different schemes of different orders for solving nonlinear 
equations. It can be concluded that obtaining better basins of attraction is not depending on the 
order of convergence of the method.Also, one can note that the optimality property of iterative 
method is not always good for solving nonlinear equations, as the area of convergence of the 
roots of the function not depends only on number of functional evaluations in each iteration, 
but there are many other factors like number of steps in the iterative scheme, order of 
convergence, and number of arithmetic operations needed at each iteration. 
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ABSTRACT  

In this paper, the ideaof - normed doubt neutrosophic ideals of -algebras is introduced 
and the characteristic properties are described. Then, images and preimages of - normed doubt 
neutrosophic ideals under homomorphism are considered.  

Keywords: -algebra; doubt neutrosophic ideal; -normed doubt neutrosophic ideal 

1. INTRODUCTION 

-algebras entered into mathematics in 1966 through the work of Imai and Iséki [4], and 
they have been applied to several domains such as groups, rings, topology and measure theory. 
Additionally, Iséki [5] initiated the idea of a -algebra, which is a generalization of a -
algebra. The idea of neutrosophic set theory proposed by Smarandache[11, 12] is a more 
general platform that extends the ideas of ordinary, fuzzy and intuitionistic fuzzy sets, and that 
is used to several parts: decision making, pattern recognition and medical diagnosis. Triangular 
norms were proposed by Schweizer and Sklar[10] to model the distances in probabilistic metric 
spaces. In fuzzy sets, -conorm  and -norm  are extensively applied to model the logical 
connectives: conjunction (AND) and disjunction (OR). There are several applications of 
triangular norms in many domains of artificial intelligence [5] and mathematics. The first 
definition of fuzzy subalgebras and ideals in -algebras was by Xi [13] in 1991. 

-algebras. After that, many other researchers used this idea and published several 
articles in different branches of algebraic structures [1, 7,14].Motivated by the previous studies, 
we present the notion of - normed doubt neutrosophicideals of -algebras and 
describe some of the characteristic properties.Then, we consider images and preimages of 

- normed doubt neutrosophic ideals under homomorphism.  

2. PRELIMINARIES 

During this paper, let  be a -algebra unless otherwise specified. 
 

A structure   is called a BCK-algebra (see [4]) if  contains a special element 0 andsatisfies 
the following axioms for all  :   
 

I.  
II.  

III.  
IV.  and  imply  

 
 

* Corresponding author 
If a -algebra  satisfies  then  is called a -algebra. In a -algebra, 

 holds. A partial ordering  on  can be defined by  if and only if . 
A non-empty subset  of  is called an ideal of  if for all (1)  (2)   and  

 
  

Definition 2.1. [11,12]A neutrosophic set in a non-empty set is a structure of the form: 
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where  We shall use the symbol  for the neutrosophic set 
 

 
Definition 2.2.[10]A function is called a triangular norm, if it 
satisfiesthe following conditions: for all  
(1)  
(2)  
(3)  
(4)  if  

 

If  and  for all  then  is called a -conorm and a -norm, 
respectively. Throughout this paper, denote  and  as a -conorm and a -norm, respectively. 
Some examples of -conorms and -norms are   
  and  
  and  
  and  

 

A -conorm  and a -norm  are called associated [11], i.e.,  
for all  
 
Lemma 2.3. [3] For any  we have and 

 
 
Definition 2.4.[14]A fuzzy set  of  is called a doubt fuzzy ideal of if

forall  

3. -NORMED DOUBT NEUTROSOPHIC IDEALS 

Definition 3.1.A neutrosophic set of is called a doubt neutrosophic idealof if 
forall  
(1)  
(2)  
(3)  

 
Definition 3.2.A neutrosophic set of is called a doubt neutrosophic 
idealof with respect to a -conorm anda -norm (or simply,an -normed doubt 
neutrosophic ideal of )if for all  
(1)  
(2)  
(3)  
Example 3.3. Consider a -algebra which is defined in Table 1: 

Table  1: The operation  

  0  k l m 
0  0   0   0   0  
k k  0   0   k  
l l k  0  l 

m m m m  0 

 
 

Define a neutrosophic set  of  by Table 2:  
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Table  2: Neutrosophic set 

    
0  0   0   1  
k  0.50   0.40   0.33  
l  0.50   0.40   0.33  

m  1   0.90   0 

 
 

Clearly,  
and  for all  Hence,  is an 

-normed doubt neutrosophic ideal of  Also, a -conorm  and a -norm  are not 
associated.  
 
Remark 3.4.Example 3.3 holds even with the -conorm  and -norm  Hence, 

 is an -normed doubt neutrosophic ideal of  
 
Remark 3.5.Every doubt neutrosophic ideal of  is an -normed doubt neutrosophic ideal 
of  but the converse is not true.  
 
Example 3.6.Consider a -algebra whichis defined in Table 3: 
 

Table  3: The operation  
 

  0   1   2   3  4 

0  0   0   0   0  0  
1  1   0   1   0  0  

2  2   2   0   0  0  
3  3   2   1   0  0  

4  4   4   4   4  0  

 
Define a neutrosophic set  of  by Table 4:  

 
Table  4: Neutrosophic set  

 

    
0  0.50   0.50   0.33  
1  0.50   0.50   0.33  
2  0.50   0.50   0.33  
3  0.75   0.75   0.25 
4  0.75   0.75   0.25 

Clearly,  and 
 for all  Hence,  is an 

-normed doubt neutrosophic ideal of  but it is not a doubt neutrosophic ideal of  
 
Definition 3.7.A mapping of -algebras is said to be a homomorphism 
if If  is a homomorphism, then  
Let  be a homomorphism of -algebras. For any neutrosophic set 

 in  we define a new neutrosophic set  such that for 
all  

 
 
 

 
Theorem 3.8.Let  be a homomorphism of -algebras. If  is 
an -normed doubt neutrosophic ideal of  then  is an 

-normed doubt neutrosophic ideal of  
 

Proof. We first have  
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 for all  Let  Then,  
 

 
 

 
 

 
 

 and  
 

 
 

Therefore,  is an -normed doubt neutrosophic ideal of  
 

Theorem 3.9.Let  be an onto homomorphism of -algebras and let 
 be a neutrosophic set of  If  is an -normed 

doubt neutrosophic ideal of  then  is an -normed doubt neutrosophic 
ideal of  

 
Proof. For any  there exists  such that  Then,  

 
 

 
 
 Let  Then,  and  for some  It follows that  

 
 
 

 
 

 
 

 
 

 
 

 and  
 

 
 

 
 

 Therefore,  is an -normed doubt neutrosophic ideal of  

5. CONCLUSIONS 

We have presented the notion of - normed doubt neutrosophic ideals of -
algebras and described the characteristic properties. Then, we have considered images and 
preimages of - normed doubt neutrosophic ideals under homomorphism.  
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ABSTRACT 

In this paper we shall solve Burger-Lokshin (BL) equation 

 

Where t 0 

 
c 0,  ,  , b 0 
byapproximate method namely Sumudu transform. Also the statistical properties of the solution will be 
studied. 
 
Keywords:Burger-Lokshin (BL) equation ,Fractional calculus, Caputo derivative,Sumudu transforms. 

1. INTRODUCTION  
The fractional differential equations(FDEs) appear more and more frequently in different 
research areas and engineering applications[7]. Momani[9] has presented nonperturbative 
analytical solutions of the space-and time-fractional Burgers equations by Adomain 
decomposition method. Wang[8] extend the application of the homotopy perturbation and 
Adomian decomposition  methods to construct approximate solutions for the nonlinear 
fractional KdV-Burgers equation.  

The one-way Burgers-Lokshin (BL) equation is the simplest model, that combines both these 
features , it has the following form: 

 

Where t 0 
 

with compactly supported initial datum  at t=0. The coefficients are c>0 
the sound speed, and >0 which takes into account the specific length of both viscous and 

thermal effects and the radius of the duct, also the fractional order  is , b 0, or 

Burgers coefficient, quantifies the nonlinear effects[6]. 

The Sumudu transform method (STM) was first proposed by Watugala[4]. [5] the author started 
from the definition of the Sumudu transform on general time scales to define the discrete 
Sumudu transform and present its basic properties. 

2. PRELIMINARIES  
In this section, we present some basic definitions and properties of the fractional calculus theory 
and Sumudu transform which are used in this work.  
 
Definition 2.1[3] 
A real function , is  said to be in the space C  , , if there exists a real number 
p(p > ) , such that  =   , where     

 iff , where  . 
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Definition 2.2[3]
The Caputo definition of fractional derivative operator is given by; 

, t > 0        (1) 

For  , . 
 
Definition 2.3 [1] 
The Sumudu transform is defined as follows, 
Let

, > 0,  f ( ) <  , if t 
is defined as, 

)          (3)                   

  Properties of the Sumudu transform are given as: 
1.   [1] = 1; 

2.  [ ] = , > 0;

3.  [ ] = ; 

4.  ( ) g ( )] =  [  ( )] +  [g ( )]. 
 

Theorem 2.1[1] 
If  is the Sumudu transform of -th order derivative of  ,for  then we have :  

 

Where  
 
Lemma 2.1[1] 
The Sumudu transform of the fractional derivative introduced by Caputo is given by  

 [ ( )] = , 1 <      (4) 

3. ANALYSIS OF THE METHOD[1] 
In this work, we apply Sumudu transform method to solve nonlinear Burgers-Lokshin 

(BL) equation. Consider a nonlinear differential equationswith  initial condition of the form: 
    (5)                                  

 

) ,    1.    ,     (6) 

 
Where    is the Caputo fractional derivatives,  is the source   term,    is   the   
linear   operator and  is the general nonlinear operator.usingSumudu transform on both sides 
of equation (5) 

       (7)                                  
Using the property of Sumudu transform (4) and substituting into (6) we have: 

 

Then,   
  (9)   

 
So, the standard Sumudu decomposition method is an infinite series given by: 

, t)                                                                                        (10) 
 
The nonlinear term operator [2] is decomposed as: 

 =    (11) 
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Where  are the Adomian polynomials of  that are obtain by: 

( )  ,     

 
The Adomian s polynomials for equation (12) are obtained from the following: 

 

Then, substituting equations (10) and (11) into (9) to get: 
(13)      

Comparing both sides of (13) yields the following iterative algorithm: 

 

Applying inverse  Sumudu transform to both sides of   the above equations yields:  
(  

 
. 

 Finally, the solution n(  , t ; can be approximated by the truncated series; 
    (14)                                                                            

Such that  
     (15)                                                                                       

Now applying Sumudu transform method to solve Burger-Lokshin (BL) equation 

   (16) 

Where t 0, c 0,  ,  , b 0 
    (17) 

Taking Sumudu transform of equation (16), and using the property of Sumudu transform 
together with the initial condition, we get: 

[ ].                                                                        (18) 

The inverse of Sumudu transform implies that; 

= [ [ (19) 

The recursive relation is given as: 

[ [ ]] 

 

[ [  ] 

 
Upon passing calculations, we get: 
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) 

And so on.  
The solution by Sumudu transformation is: 
 

 

 

 

   (20) 

  

 

Figure 1 : represent the solution where
and  

Figure 2 : represent the solution where 
and  
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ABSTRACT 

Diophantine equations have a central and a significant role in mathematics especially in 
number theory. It is an algebraic equation or a system of polynomial equations with several 
variables and high order to be solved in set of  integers, set of rational numbers, or other 
number rings. It is not easy to solve Diophantine equations if the number of variables is 
more than the number of equations.  
 
The paper proposes a method  to find infinitely non zero solutions of quartic diophantine 
equation with three unknowns in set of integers. Then, several properties  for solutions are 
demonstrated. Also, significant relations between special numbers and solutions are 
determined and one of open problems in the literature is completed/solved.   

 
Keywords: Quartic Diophantine Equation;Integer solutions of Pell Equations; Linear 
Transformations; Special Sequences. 
2010 Mathematics Subject Classification: 11D25, 11B83, 11D09. 

1. INTRODUCTION AND PRELIMINARIES 
 
In this paper, we consider a ternary quartic Diophantine equation given by 

 The main aim of the paper is to determine some non-zero integer solutions 
of the such non-homogenous Diophantine equation. For all non-zero integer solutions of the 
equation, we have to consider and apply four different patterns include different 
transformations. But, we just prove one pattern with a linear transformation in this work. To 
get integer solutions of the such Diophantine equation, we use following steps: First, we create 
a transformation to reduce to Pell equation and secondly , we  apply Brah
the obtained Pell Equation in the first step to have integer solutions. Also, we get various 
properties for the solutions in the terms of some special numbers such as Nasty numbers, Bi-
quadratic numbers, Polygonal numbers, Pyramidal numbers etc... 
 
We have used all references [1-19] to obtain our results in the paper. Especially, we require 
following  basic notions and theories to get and prove Main Results section. 
 
Definition 1.1.A biquadratic number is a fourth power of an integer, it means that  . The first 

  
 
Definition 1.2. (Nasty Numbers) A nasty number is a positive integer with at least four different 
factors such that the difference between the numbers in one pair of factors is equal to the sum 
of the numbers of another pair and the product of each pair is equal to the number. Thus a 
positive integer n is a nasty number, if n = a  b = c  
positive integers. 
 
Example 1.3. The positive integer  with four different factors is 96 and it is nasty number. 
Since factors of 96 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 and  96 = 8 × 12 = 24 × 4 as well as 
8 + 12 = 24  4. Therefore 96 is a nasty number.  
 
Lemma 1.4. Properties of Nasty Numbers are given by following expressions: 
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1. If   is a nasty number, then clearly   is also a nasty number for every non-
zero integral value of . 

2. If four positive integers  such that   are in arithmetic progression 
with  as their common difference, then  is a nasty number. 

3. Every integer  of the form 6.(12 + 22 + 32 + · · · + k 2 ) is a nasty number. 
4. Every integer  of the form 6.[12 + 32 2 ] is a nasty number.  

 
Definition 1.5.(Polygonal Numbers) Polygonal numbers are number representing dots that are 
arranged into a geometric figure. Starting from a common point and augmenting outwards, the 
number of dots utilized increases in successive polygons. As the size of the figure increases, 
the number of dots used to construct it grows in a common pattern.  
 
The concept of polygonal numbers was first defined by the Greek mathematician Hypsicles in 
the year 170 BC. There are some different types of polygonalnumbers such as square 
numbers,triangular numbers, pentagonal numbers so on.. 
 
In this work, we use Polygonal number of rank n with size m defined as follows: 
 

(1) 

 
Definition 1.6.(Pyramidal Numbers) A figurate number corresponding to a configuration of 
points which form a pyramid with m-sided regular polygon bases can be thought of as a 
generalized pyramidal number. 
 
In the numbers, m=3 corresponds to a tetrahedral number, and m=4 to a square pyramidal 
number. Pyramidal numbers may also be generalized to higher dimensions as hyperpyramidal 
numbers. 
 
In this paper, we consider Pyramidal number of rank n with size m which is defined as following 
equation: 
 

(2) 

 
Lemma 1.7. ma) If  is a solution of  and  is 
a solution of   , then  and 

 are solutions of . 
 
Note:In the 17th century , Fermat started to work on Pell equation in europe and after him, 
Euler and Lagrange continued. John Pell, after whom the Pell equation is named. 
 
Definition 1.8.  is known as Positive Classic Pell's equation, where  i s a 
positive integer which is not a perfect square. 
 
Definition 1.9.A transformation is a function from one vector space to another that respects the 
underlying structure of each vector space. A transformation is also known as a operator or 
map.Especially, linear transformations are useful since they preserve the structure of a vector 
space. 
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2. MAIN RESULTS 
 
Theorem 2.1.Let 
 

                 (3) 
 
beternary quartic Diophantine equation. Then, followings are satisfied. 
 
(i) There is a transformation that (3) equation reduces to positive Pell equation and the 

least positive solution of the (3) is determined by (  
(ii) The corresponding other non-zero integer solutions to (3) are stated by 
 

        and       

 

 

 
such that are defined by the solutions of positive classical Pell equation. 
 
Proof. As we said in the introduction part there are different patterns of the solutions for (3) 
and in here we just use one of them as following: 
 
(i) Let us consider the transformations 
 

  ,  ,                          (4) 
 
By substituting (4) into the (3) we get following positive Pell equation. 
 

                   (5) 
 
Using a computer program ( or Continued Fraction Algorithm) for finding the least positive 
solution of (5), we obtain  
 

  and             (6) 
 
If (6)  substitutes in  (4), then following values are  got for . 
 

,   and                (7) 
 

So, the least positive solution of the (3) is attained by  (  
 
(ii) For other general solutions  of positive Pell equation (5), considering the positive 

Pell equation , we get general solutions as follows: 
 

 

 

 

 
for  

s lemma between the solutions  
and the sequence of integer solutions to (5) are defined by  
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   and                                (8) 

 
for  
If we substitute (8) to  (4), then general corresponding non-zero integer solutions to (3) are 
determined by 
 

        and       

 

 

 
for  
 
Example 2.2. Considering the Theorem 2.1, we can find several solutions of (3) as numerical 
examples. 
 
For ,  (  
 
For     (  
 
For      (  
       ...                             ...                                                 ... 
 
Corollary 2.3. There are some relations among sequences of integer solutions of (3) as the 
following: 
 

(i) , for  
(ii) ,for  
(iii) ,for  
(iv) 111 , for  

 
Proof.It is easily to seen that all conditions are satisfied for   Also, it can 
be  provedby using Mathematical induction and computer program for  
 
Corollary 2.4. Each of the following statements is represented by quartic (bi-quadratic) 
integers. 
 

(i) , for  and . 

(ii) ,for  and  . 

 
Proof.We can see that It can be proved byDefinition 1.1 and mathematical induction as well as 
computer program. 
 
Corollary 2.5. Sequences of general non-zero integer solutions of (3) are written in the terms 
of polygonal number of rank  with size 22 as follows: 
 

 

 
Proof.It can be proved using Definition 1.3, Mathematical induction and also computer 
program. 
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Corollary 2.6. Following expressions give relations between sequences of general non-zero 
integer solutions of (3) and  the terms of pyramidal number of rank  with size 5 or rank 

 with size 3. 

(i)  , for  

(ii)  , for  

 
Proof.Using Definition 1.4, Mathematical induction and computer program, we can prove the 
Corollary 2.6. 
 
Corollary 2.7. Pyramidal number of rank  with size 4 and polygonal number of rank 

 with size 3 is written by sequences of general non-zero integer solutions of (3) as follows: 
 

 

 
for  
 
Proof. Considering Definition 1.4, Definition 1.3, Mathematical induction and computer 
program, Corollary 2.7 can be demonstrated for  
 
Corollary 2.8.  is a nasty number for  
 
Proof.In a similar way of the proofs of above corollaries, for , it is proved by 
Definition 1.2, Mathematical induction and computer program. 
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ABSTRACT 

Many open problems in Number Theory has been waiting to solve for a long time before.  One 
of them is Diophantine 3-tuples  which is 
of any two distinct elements adding  integer is a square integer  
The purpose of this study is to determine some special non-extendible regular  Diophantine 
3-tuples for a fixed integer . To get them, solutions of diophantine equations are considered. 
Some characteristic properties are determined for such sets. Results are demonstrated using 
some notions such as quadratic reciprocity law, legendre symbols, quadratic residues, modular 
arit  
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1. INTRODUCTION AND PRELIMINARIES 

The purpose of this brief paper is to determine some specific non-extendible regular 
Diophantine triples with propert  for fixed integer  or  To prove those sets 
are not extendible, we consider quadratic diophantine equations and apply factorization method 
of integers on them. Then, we determine their congruences types and regularity.Also, we 
classify the elements of Diophantine sets with property  for fixed integer  or  
using basic concepts of elementary and algebraic number theories. The paper will constitute the 
basis for our next paper. 
All of the references [1-17] are significant and handy for the topic of this paper. Following 
basic concepts and theories are used to get our main results for the paper. 
 
Definition 1.1.(Diophantine Sets,Diophantine Tripleswith Property )Foranyinteger s, a 
Diophantine -set with n-tuples is defined as the following: 

A set  is n-tuple of different positiveintegers where  is always a perfect 
square of an integer for every distinct i andj, where . 

As a particular case, the set is called - Diophantine triple if n =3. 

 
Definition 1.2.(Regular Diophantine Triple)If - Diophantine triple  satisfies the 
condition 
 

 
 

it is called Regular Diophantine Triple. 
 
Definition 1.3.(Quadratic Residue)If  and   with , then  is to be a 
quadratic residue modulo  if there exists an integer  such that 
 

            (2) 
 

Besides, if (2) has no solution, then  is called  a non-quadratic residue modulo . 
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Definition 1.4.(Legendre Symbol)If and is a prime, then
 

              (3) 

 

and    is called the Legendre Symbol of  with respect to . 

 
Theorem 1.5. (The Quadratic Reciprocity Law)Let  be distinct odd primes.Then  
 

              (4) 

 

where  represents Legendre symbol. Also, Quadratic Residuacity of 2 modulo  is given by 

 

                 (5) 

 
and also Quadratic Residuacity of (-1) modulo  is defined by 
 

          (6) 

 
Definition 1.6. (Congruence Type)If the elements of set - Diophantine triples are reduced 
modulo 4, it is called congruence type column and represented by . 
 
2. MAIN RESULTS 

 
Theorem 2.1. Let  be a set with three positive integers. Then following 
statements are satisfied. 

(i)  is a non-extendible to Diophantine quadruple with property . 

(ii)  is regular Diophantine triple with property  and congruence type 
column of the set is . 

 
Proof.  (i)Let can  be  extended to Diophantine quadruple with property  
Then, is Diophantine quadruple for any positive integer Then, there exist 

 integers such that following equations are hold. 
 

                                                                        (7) 

 
                                                                        (8) 

 
                                                                        (9) 

 

Simplify  between (7) and (9), we obtain 
 

                                                                      (10) 
 

By factorizing the both  side of (10), then we get following table: 
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Table 1:Integer solutions of 

 
Dropping of  between (7) and (8),  we get 

 
                         (11) 

 
From the values of variables in the Table 1, we calculate  , , 

 and  respectively. Putting values of  into the  (11), , 
,  and  are obtained. This is a contradiction since ues are 

not integer solutions of (11).  
So, there is not any such  and the  can not be extended to 
Diophantine quadruple. 
 

(ii)  Let consider regularity condition (1) in Definition 1.2.  Then, it is easily seen  that 
is a regular Diophantine triple.  

We can see that the congruence type column of   is . Also, one of the 
congruence type of [12] is obtained from  (ii) in Theorem 2.1. 

 
Theorem 2.2.Let  be a set of three positive integers. The following 
expressions are hold. 
 
(i) cannotextendible to Diophantine quadruple with property . 
(ii)  is a regular Diophantine triple with property  and congruence type 

column of the set is . 
 

Proof. The proof of the Theorem 2.2 is obtained as like the proof of the Theorem 2.1. 
 

Theorem 2.3.If a set  is of three positive integers, then the following statements 
are provided. 
 

(i)  can non-extendible to Diophantine quadruple with property . 
(ii) is a regular Diophantine triple with property  and congruence 

type column of the set is . 
 

Proof.(i)Given that   be a Diophantine quadruplewith property  for 
Considering the Definition 1.1, we have 

 
                           (12) 

 
                           (13) 

 
                           (14) 

 
for . Dropping  from  (12) and (14), following equation is obtained; 
 

                           (15) 

Solutions 1.Class of 

Solutions 

2.Class of 

Solutions 

3.Class of 

Solutions 

4.Class of 

Solutions 
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And also in a same way, we obtain following equation from (12) and (13); 
 

                           (16) 
 
From the  factorization method in the set of integers, we have following table for  
soutions in the set of integers. 
 

Table 2:Integer solutions of  

Solutions 1.Class of Solutions 2.Class of Solutions 

   

 
Using the  values from Table 2 and substituting in the (16), we get  or 

 This  shows that  is not integer solution for (16). It is a contradiction and 
 is a Diophantine triple. 

 
(ii)Applying  the condition (1)  of Definition 1.2 on  , we can see that the 

set is regular triple. Besides, using modulo 4 on the set , we obtain congruence type column as 
 which is not found in [12]. 

 
Theorem 2.4. A set is of three positive integers.  can be  
non-extended to  Diophantine quadruple with property . Also,  is regular 
and congruence type column of the set is . 
 
Proof.The proof of the Theorem 2.4 is obtained in the similar way  of the Theorem 2.1. or 
Theorem 2.3. Applying (mod 4) on the set , congruence type column is given by   which 
is not determined in [12]. 
 
Theorem 2.5. Given that   is a set of positive integers.  Then,  
can not be extended to  Diophantine quadruple with property . Besides,  is 
regular Diophantine triple and alsocongruence type column of the set is given by . 
 
Proof. The proof of the Theorem 2.5 is obtained in the similar way of the Theorem 2.1. or 
Theorem 2.3. Congruence type column is determined by   as like in [12]. 
 
Theorem 2.6.Let   is a set of positive integers. Thus, both  

can not extendible to Diophantine quadruple with property  and 
is regular Diophantine triple. Additionally, is congruence type column of 

the  set. 
 
Proof. The proof of the Theorem 2.6 is obtained in a same way  of the Theorem 2.1. or Theorem 
2.3. As we said in the proof of Theorem 2.4,congruence type column is defined by  not  
in [12]. 
 
Remark.  New sets  for  Diophantine triples can be found with our method  and all of them 
can be generalized in the terms of some special numbers or  special integer sequences. 
 
Theorem 2.7.Following conditions satisfy for Diophantine sets with property  
 

(i)  ,  is divided by 3 or any multiplies of 3, then   
(ii) (  ,  is divided  by 7 or any  multiplies of 7, then   )  or   (  ,  

is divided by 11 or  any multiplies of 11, then   )  or  (  ,  is divided 
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by 13 or any multiplies of 13, then  ) or  ( , is divided by 17 or any 
multiplies of 17, then  )    or  (  ,  is divided by 19 or any multiplies 
of 19, then     or  (  ,  is divided by 29 or any multiplies of 29, then  

 
 

Proof.i)Given  that both  and also  ,  is divided by 3 or any multiplies of 3, be 
elements of  Diophantine set.From the  Definition 1.1, we get 
 

                            (17) 
 

for an  integer  and . Applying (mod 3) on the both side of  (17), we obtain 
 

                            (18) 
 

From (5) of Theoem 1.1, we have 
 

                                      (19) 

 
,   is divided 

by 3 or any  multiplies of 3, then   
 

ii)The first satisfied condition of Theorem 2.7 is proved by using Theorem 1.1. In a 
similar way and using Definition 1.3, Definition 1.4, Definition 1.5 and Theorem 1.1, others 
can be proved. 
 
Remark. Theorem 2.7 can be extended for some integers.  
 
Theorem 2.8.Let be a set of three positive integers. Then, following expressions 
are provided with property . 
 

(i) cannot extendible to Diophantine quadruple with property . 
(ii)  is a regular Diophantine triple with property  and congruence 

type column of the set is determined by  . 
 
Proof.(i)Assume that  be a Diophantine quadruple with property  for 

Applying Definition 1.1 on the  set, we get 
 

                           (20) 
 

                           (21) 
 

                           (22) 
 

for . Using simplification of  from  (20) and (22); 
 

                     (23) 
 

is obtained.In a same vein, we have following equation from (2.14) and (2.15); 

                (24) 

We have following table from the equation (23): 
Table 3: Integer solutions of  
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Solutions 1.Class of Solutions 2.Class of Solutions

   

 
We obtain  or  by considering Table3. It is clear that  is not integer 
solution of the (2.18) equation. So, it is a contradiction. is a Diophantine 
triple and can not extendible to Diophantine quadruple with property  
 

ii) We can easily see that the set  is regular triple from the condition (1) of 
Definition 1.2. Also,practicing (mod 4), we get congruence type column as like which 
is not in [12]. 

 
Theorem 2.9.For a set  includes three positive integers, the following 
statements are provided. 
 
(i) cannot extendible to Diophantine quadruple with property . 
(ii) is a regular Diophantine triple with property  and congruence type 

column of the set is given by  . 
 

Proof. The proof of the Theorem 2.9 is got in the same way of the proof of Theorem 2.8. 
From modular algorithm, we have congruence type column as which is not in [12]. 
 
Theorem 2.10.For a set contains three positive integers then  can  
not be extented to  Diophantine quadruple with property . Besides,  is a 
regular Diophantine triple set and congruence type column of the set is determined by  . 
 
Proof.The proof of the Theorem 2.10 is hadlike the  proof of Theorem 2.8. We have congruence 
type column as like given in [12]. 
 
Theorem 2.11:There is no Diophantine set  contains any multiple of 4, 13, 17,  23, 29, 
31...so on... 
 
Proof.Suppose that  is an element of Diophantine set  . If  is also an element of set  

  for  , then  
 

                      (25) 
 

is satisfied for some integer . Considering (mod 4) and apply on the (2.19), we get 
 

                     (26) 
 

If   is odd integer then we have  and also is obtained 
otherwise. So, (26) can not be solved. This is a contradiction. Thus, there is no Diophantine set 

 contains any multiple of 4. 
 
Remark.There are lots of and one may determine 
others using our method based on preliminaries section. 
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ABSTRACT 

In this paper we have obtained integral sufficient conditions under which the zero solution of a nonlinear 
differential equation of second order with initial condition is unstable in the sense of Hyers and Ulam . 
We also have proved the Hyers -Ulam Instability of a linear differential equation of second order with 
initial condition. To illustrate the results we have given an example. 
 
Keywords: Hyers -Ulam , Instability, Nonlinear ,Linear, Differential equations. 
 
1. INTRODUCTION 

       In [10], Ulam posed the basic problem of the stability of functional equations: Give 
conditions in order for a linear mapping near an approximately linear mapping to exist . This 
problem was partially solved by Hyers in 1941, for approximately additive mappings on Banach 
spaces [3]. In 1978 Rassias in his work [8], has generalized that result obtained by Hyers. 
       After then, many mathematicians have extensively investigated the stability problems of 
functional Equations. More than twenty years ago, a generalization of Ulam's problem was 
proposed by replacing functional equations with differential equations.  
The first step in the direction of investigating the Hyers-Ulam stability of differential equations 
was taken by Obloza [6] and Alsina [1]. 
      This result of Obloza has been generalized by authors [4,5,9,11]. Qarawani [7] investigated 
the Hyers-Ulam stability nonlinear differential equation of second order   

with the initial conditions . In [2] Brillouë t-Belluot indicated that there 

are only few outcomes of which we could say that they concern nonstability of functional 
equations. 
       In this paper, we investigate for the first time the Hyers-Ulam instability of the following 
linear differential equation of second order 

                                                         (1.1) 

with the initial conditions  
                                                       (1.2) 

      Moreover we have proved the Hyers-Ulam instability of the nonlinear differential 
equation of second order  

                                                        (1.3) 

with the initial conditions  
                                                       (1.4) 

where  is a function defined in   and  is a 

ratio of two positive odd integers. 

2. PRELIMINARIES  

Definition 2.1 We will say that the Eq. (1.1) has the Hyers -Ulam stability with the initial 
conditions (1.2) if there exists a positive constant with the following property: 

For every  where  is sufficiently large in , if   

                                                   (2.1) 
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then there exists some solution  of the Eq. (1.1)  such that  

  and satisfies the initial conditions  

 
Definition 2.2 We will say that Eq. (1.3) has the Hyers-Ulam stability with initial conditions 
(1.4) if there exists a positive constant    with the following property:      

For every  where is sufficiently large in ,  if  

                                                  (2.2) 

then there exists some solution  of the Eq. (1.3) and 

 

such that   

3. MAIN RESULTS ON HYERS-ULAM INSTABILITY  

Theorem 3.1 Suppose that   and  for all  such that 

satisfies the inequality 
 

  

with the initial condition  
 

If   diverges, then the zero solution of Eq. (1.1) is unstable in the sense of Hyers and 

Ulam. 
Proof. Suppose that   satisfies the inequality (2.1) with the initial conditions (1.2). 

We will show that zero solution   of the Eq. (1) will satisfy the inequality  

 . On the contrary, let us assume that there exists  such that  

 Then we can find a constant   such that  

 

From the inequality (2.1) we have      
                                     (3.1) 

Multiply the inequality (3.1) by  and then integrate we obtain 

                (3.2) 

Since   then from (3.2) we get  

 

Therefore  

 

2 2

0
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Similarly if we multiply the inequality (3.1) by   then we get 
 

 

and  

 

This contradicts the hypothesis that   is a constant. 
Thus, we have   Obviously,  satisfies the Eq. (1.1) and the zero 

initial condition (1.2) such that   Therefore the Eq. (1.1) is 

instable in the sense of Hyers and Ulam. 
Example 3.1 Consider the equation  

                                                     (3.3) 
with the initial condition 

                                                 (3.4) 

We will show that zero solution of the  equation (3.3) will satisfy the 
inequality   On the contrary, suppose that there exists  
such that   Then we can find a constant  such that  

 

Multiply the following inequality  by  and then integrate      

 

we obtain 

 

If we assume that   for all    then we get  

 

Since the integral   diverges, then for   we get  

 
Similarly if we multiply the inequality (3.3) by  then we get 
 

 

and for sufficiently large  we obtain  

 

0 0

2
x x

x t

x x

0

2
x

t

x
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Obviously, satisfies the equation (3.3) and the zero initial condition (3.4) 
such that   Therefore the equation (3.3) is unstable in the 

sense of Hyers and Ulam. 
Theorem 3.2 Suppose that  and  for all  such that 

satisfies the inequality 
                                              (3.5) 

with the initial condition  
                                                    (3.6) 

If   diverges, then the Eq. (1.3) is unstable in the sense of Hyers and Ulam. 

Proof. On the contrary, suppose that there exists  such that  
 Then we can find a constant such that  

  

From the inequality (3.5) we have      
                                                 (3.7) 

Multiply the inequality (3.7) by  and then integrate we obtain 

 

From which we get that  

 

Since the integral   diverges, then for   we get  

 

Similarly if we multiply the inequality (3.7) by  then we get 
 

 for any 

 

And for sufficiently large   we obtain  

 

So we conclude that   Obviously,  satisfies the Eq. (1.3) and 

the zero initial condition (1.4) such that  
0

0
x x

 Therefore the Eq. (1.3) 

is unstable in the sense of Hyers and Ulam. 
Example 3.2 Consider the Eq.  
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                                                   (3.8) 

with the initial condition 
                                                     (3.9) 

We will show that zero solution of the Eq. (3.8)will satisfy the inequality  

On the contrary, suppose that there exists  such that  

 Then we can find a constant such that  

 

Multiply the following inequality by  and then integrate      

                                            (3.10) 

we obtain 

 

If we assume that   for all  then we get  

 

Since the integral  diverges, then for  we get  

 

Similarly if we multiply the inequality (3.10) by  then for sufficiently large  we 
obtain  

 

So we conclude that  Obviously, satisfies the Eq. (3.8)and the 

zero initial condition (3.9) such that   Therefore the Eq. (3.8)is 

unstable in the sense of Hyers and Ulam. 
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ABSTRACT  

The objective of the current work is to extend the thought of Q-neutrosophic soft sets to fields. 
In this paper, we define the notion of Q-neutrosophic soft fields. Structural characteristics of it 
are investigated.  

Keywords:neutrosophic soft field; Q-neutrosophic soft field; Q-neutrosophic soft set 

 

1. INTRODUCTION 

Fuzzy sets were established by Zadeh [20] as a tool to deal with uncertain data. Smarandache 
[16] initiated the neutrosophic idea as a new extension of the fuzzy set. A neutrosophic set (NS) 
[15] is a mathematical notion serving issues containing imprecise, indeterminate, and 
inconsistent data. In [11], Molodtsovintroduced the soft sets as another way to handle 
uncertainty. Since its initiation, a plenty of hybrid models of soft sets have been produced,for 
example, fuzzy soft sets [14], neutrosophic soft sets (NSSs) [9]. NSSs were extended to Q-
neutrosophic soft sets (Q-NSSs) [3] a new model that deals with two-dimensional uncertain 
data. Q-NSSs were further investigated and their basic operations, relations and measures of 
entropy distance and similarity were discussed in [1-3].Different hybrid models of fuzzy sets 
and soft sets were utilized in different branches of mathematics, including algebra. This was 
started by Rosenfeld in 1971 [14] when he established the idea of fuzzy subgroup. Since then, 
the theories and approaches of fuzzy soft sets on different algebraic structures developed 
rapidly. In this respect, severalauthors have utilizeddistinct hybrid models of fuzzy sets to 
differentdomains of algebra such as groups, fields, rings semigroups and BCK/BCI-algebras 
[4,5,8,12,19]. NSs and NSSs have received moreattention in studying the algebraic structures 
of set theories dealing with uncertainty. Bera and Mahapatra introduced the notion of 
neutrosophic soft groups [6], neutrosophic soft fields [7]. Moreover, two-dimensional hybrid 
models of fuzzy sets and soft sets were also applied to different algebraic structures. Solairaju 
and Nagarajan [17] presentedQ-fuzzy groups. Also, Rasuli [13] defined Q-fuzzy subrings and 
anti Q-fuzzy subrings, while Thiruveni and Solairaju introduced neutrosophic Q-fuzzy 
subgroups [18].Inspired by the above works and to utilize Q-NSSs to different algebraic 
structures, in the current paper, we define the notion of Q-neutrosophic soft fields (Q-NSFs) 
and discuss some of its structural characteristics.  

2. PRELIMINARIES 

Here, we recall the basic definitions related to this work.  
 
Definition 2.1. [3]Let  be a universal set,  be a nonempty set and be a set of parameters. 
Let be the set of all multi Q-NSs on with dimension . A pair is called a 
Q-NSS over , where is a mapping, such that  if  
 
Definition 2.2. [1]The union of two Q-NSSs and is the Q-NSS written 
as ,where and for all , the truth-
membership, indeterminacy-membership and falsity-membership of are as follows: 
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Definition 2.3. [1]The intersection of two Q-NSSs and is the Q-
NSS written as , where and for all

and  the truth-membership, indeterminacy-membership and falsity-
membership of are as follows:  

 

 

 

3.  Q-NEUTROSOPHIC SOFT FIELDS 

In the current section, we present Q-NSFs and discuss several related properties. 
 

Definition 3.1.Let  be a Q-NSS over a field . Then  is said to be a Q-NSF 
over  if for all ,  is a Q-neutrosophic subfield of , where  is a 
mapping given by . 

 
Definition 3.2.Let be a field and be a Q-NSS over . Then, is 
called a Q-NSF over if for all and it satisfies: 

(1) 

,  

(2) . 

(3) 

 

(4) 

 

 
Example 3.3. Let be the field of real numbers and A=  the set of natural numbers 
be the parametric set. Define a Q-NSS as follows for and  
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 It is clear that  is a Q-NSF over .  
 

Proposition 3.4.Let  be a Q-NSF over . Then, for the additive identity  and 
the multiplicative identity , for all  and  the following hold   
(1)  

(2)  

for .  
(3) 

 

 
Proof.  and  
(1)  

 

 

(2) 

 

(3) Follows directly by a  
 

Theorem 3.5.A Q-NSS  over the field  is a Q-NSF if and only if for all 
 and  

(1) 

 

(2) 

 
 

Proof. Suppose that  is a Q-NSF over . Then,  
 

 

 

 Also,  
 

 

 
 
Conversely, Suppose that conditions 1 and 2 are satisfied. We show that for each ,  
is a Q-neutrosophic subfield  
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 also,  
 

 

 

 Next, 
 

  

 

  

 

  

 and  
 

 

 

 This completes the proof.  
 
Theorem 3.6.Let  and  be two Q-NSFs over . Then,  
is also Q-NSF over .  
 
Proof. Let . Now,  and ,  

 

  

  

  

 also,  
 

  

  

  

similarly, . Next,  

 

  

  

  

 also,  
 

  

  

  

 similarly, we can show . This completes 

the proof.  
Remark 3.7.For two Q-NSFs and over , is not 
generally a Q-NSF. 
For example, let . Consider two Q-NSFs  and  over  as 
follows: for  and  
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and 

 

 

 

 Let . For  we have 
 

and  
  

  

  
  

Hence, . Thus, the union is not a Q-NSF.  

 
6. Conclusion 
We have introduced the concept of Q-neutrosophic soft fields. We have investigated some of 
its structural characteristics 

 

REFERENCES 

[1] M. Abu Qamar and N. Hassan, An approach toward Q-neutrosophic soft set and its application in decision 
making, Symmetry 11(2)(2019) 139 18 pages. 

[2]  M. Abu Qamar and N. Hassan, Entropy, measures of distance and similarity of Q-neutrosophic soft sets 
and some applications, Entropy 20(9)(2018) 672 16 pages. 

[3] M. Abu Qamar and N. Hassan, Q-neutrosophic soft relation and its application in decision making, Entropy 
20(3)(2018) 172 14 pages. 

[4] A. Al-Masarwah and A.G. Ahmad, m-polar fuzzy ideals of BCK/BCI-algebras, Journal of King Saud 
University-Science 2018, doi:10.1016/j.jksus.2018.10.002. 

[5] A. Al-Masarwah and A.G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-
algebras, European Journal of Pure and Applied Mathematics 11(2018) 652-670. 

[6] T. Bera and N.K. Mahapatra, Introduction to neutrosophic soft groups, Neutrosophic Sets and Systems 
13(2016) 118-127. 

[7] T. Bera and N.K. Mahapatra, On neutrosophic soft field, International Journal of Mathematics Trends and 
Technology 56(7)(2018) 472-494. 

[8] F. Feng, B.J. Young and X. Zhao, Soft semirings, Computers and Mathematics with Applications 56(2008) 
2621-2628. 

[9] P.K. Maji, Neutrosophic soft set, Annals of Fuzzy Mathematics and Informatics 5(1)( 2013) 157-168. 
[10] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft set theory,The Journal of Fuzzy Mathematics 3(9) (2001) 

589-602. 
[11] D. Molodtsov, Soft set theory-first results, Computers & Mathematics with Applications 37(2)(1999) 19-

31. 
[12] S. Nanda, Fuzzy algebras over fuzzy fields, Fuzzy Sets and Systems 37(1990) 99-103. 
[13] R. Rasuli, Characterization of Q-fuzzy subrings (Anti Q-fuzzy subrings) with respect to a T-norm (T-

conorm), Journal of Information and Optimization Sciences 39(2018) 827-837. 
[14] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications 35(1971) 512-517. 
[15] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, International Journal of 

Pure and  Applied Mathematics 24(3) (2005) 287 297. 
[16] F. Smarandache, Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: 

Rehoboth, IL,USA, 1998. 
[17] A. Solairaju and R. Nagarajan, A new structure and construction of Q-fuzzy groups, Advances in Fuzzy 

Mathematics 4(2009) 23-29. 



107 
 

[18] S. Thiruveni and A. Solairaju, Neutrosophic Q-fuzzy subgroups,International Journal of Mathematics And 
Its Applications 6(2018) 859-866. 

[19] G. Wenxiang and L. Tu, Fuzzy algebras over fuzzy fields redefined, Fuzzy Sets and Systems 53(1993) 
105-107. 

[20] L.A. Zadeh, Fuzzy sets, Information and Control 8(3)(1965)338-353. 
  



108 
 

SOLVING THE BEAM DEFLECTION PROBLEM USING AL-TEMEME 
TRANSFORMS  

, and Sarah Faleh Maktoof  
Communication Engineering department, Al-Mansour University Collage, Baghdad, Iraq 

 E-mail:   emad.kuffi@muc.edu.iq 
 

Communication Engineering department, Al-Mansour University Collage, Baghdad, Iraq 
E-mail: elaf.abbas@muc.edu.iq 

 

ABSTRACT  

In this paper, an enhancement to the beam deflection problem is performed through the substitution 

of  by  , this substitution is performed to reduce the beam load intensity, also the enhanced 

beam deflection problem is solved using two new transforms, which are complex AL-Tememe and 
AL-Tememetransforms.  the results (solutions)  from complex AL-Tememe and AL-Tememe 
transforms are compares to each other, both transforms have the ability to solve the enhanced 
problem of the beam deflection.  

Keywords: Complex AL-Tememe transform; AL-Tememe transform; deflection of the beam, 
differential equations; famous function; Inverse of  AL-Tememe transform;  Inverse of  complex 
AL-Tememe transform; uniform distributed load. 

 

6. INTRODUCTION  

The beam deflection problem is widely discussed in many books [7-11], where many methods 
are used to solve that problem, however the use of Al-Tememe and complex Al-Tememe 
transforms never discussed before. AL-Tememe and complex AL-Tememe are two 
transforms that emerged at 2016 and 2018 respectively, these transforms can solve  some 
types of deferential equations, which can be used in many scientific fields, such as physics, 
engineering and bio-medical signal processing [2,4,5,6]. In this paper, the problem of 
deflection of beam is solved using complex AL-Tememe and AL-Tememe transforms, and 
the solutions from these transforms are compared.  

7. BASIC CONCEPTS  

It is necessary to mention some relevant definitions, functions, proprieties and 
theorems to make the calculations clearer.  

2.1Definition of complex AL-Tememe transform [2]: 

A complex AL-Tememe transform for the function , is defined by the integral:  
 

Such that this integral is convergent in , is a positive constant, and  is the kernel of 
this transform and . 
 
2.2 Definition of inverse complexAL-Tememe transform [2]: 
If  represents a complex AL-Tememe transform of , then  is said to 
be the inverse the AL-Tememe transform and it can be written by:  
 
2.3 Propriety of complex AL-Tememe transform [2]: 
A complex AL-Tememe transform linear: 

 Where A and B are constants, the function  and  are defined when 
 

 
 
2.4 Complex AL-Tememe transform of some famous function [2] :  
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1.  

2.  

 
2.5 Inverse of  complex AL-Tememe transform of famous function [2]: 

1) . 

2) . 

3) . 

 
2.6 Theorem [2]:  
Let  be defined function for , and its derivatives  exist, 
then: 

 

2.7 Definition of AL-Tememe transform [1]: 
Al-Tememe Transform for the function ;  is defined by the following integral 

 Such that this integral is convergent in some region,  is 
a positive constant, and  the kernel of Al-Tememe Transform. 

2.8 Definition of inverse AL-Tememe transform [1]: 
Let  be a function where  and ,  is said to be an inverse for 
Al-Tememe Transform and written as: , where  returns the transform to 
the original function. 

2.9 Propriety of AL-Tememe transform [1]: 
The transformation is characterized by the linear propriety, that is: 

 where  and  are constants, the functions  and  are defined 
when . 

2.10 Table of selected Al-Tememe transforms [1]   
 

Function   Region of convergence  

   

   

   

   

 
 

3. DEFLECTION OF THE BEAM PROBLEM[3]: 
 If a beam of length  with rectangular cross section and homogenous elastic material (e.g. 

steel) is considered as shown in figure (1).  
 And if a load is applied to the beam in vertical plane through the axis of symmetry (the x-

axis), the beam is going to bent.  
 If  a cross-section of the beam cutting the elastic curve in  and the neutral surface in the 

line . 
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(a) Figure (1) 

 Then the bending moment  about  is given by Bernoulli- Euler law. 

 

Where: 
 modulus of electricity of the beam. 

 moment of inertia of the cross-section . 
 radios of curvature of the elastic curve at . 

If the deformation of the beam is small, the slope of the elastic curve is also small so that 

it is possible to neglect  in the formula . 

 For small defection,  .  

 Hence, (3.1) bending moment .  

 Shear force   . 

 Intensity of loading . 

 The sum of moments about any section due to external forces on the left of the 
section, if anti-clock is taken as positive and if clockwise is taken as negative. 

 The most important supports corresponding boundary conditions are:  
1) Simply supported as shown in figure (2): 

 
Figure (2) 

 No deflection and bending moment exist. Then:  
. 

. 
2) Completed at , free at  as shown in figure (3).  

 
Figure (3) 

 At , the deflection and slop of the beam being both zero. At , there are 
no bending moment and shear force. We have, 

. 
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3) Clamped at both ends: The defection and the slop of the beam being both zero, then: 
. 

. 
 

4. THE DEFLECTION OF A BEAM CARRYING UNIFORM DISTRIBUTED LOAD  
Assume that a uniform loaded beam of length L is supported at both ends, as shown in 
figure (4). The deflection  is a function of horizontal position x, it is given by the 

differential equation:  

 

Figure (4) 
Where  is the load per unit length at point x. it is assumed in this problem that 

 (q is a constant). 
The boundary conditions are:  

(i). No deflection at  and . 
(ii). No bending moment of the beam at  and . 

 

 
 

4.1 Solving the deflection of a beam carrying uniform distributed load using complex AL-
Tememe transform 
Complex AL-Tememe transform is used to solve the problem of deflection for a beam 

that carrying a uniform distributed load. After substituting each  by  equation (4.1) 

becomes:  

By taking a complex AL-Tememe transform to both sides: 

,  

. 

. 

By taking the inverse of a complex AL-Tememe transform to both sides: 

 .  

Now, we take  

 

After simple computations, we get:  

.  

Then  

. 
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Also, we take

. 

After simple computations: 
. 

Then: 

.  

As well as, we take  

. 

After, simple computations:  

. 

Then: 

. 

Then:  

. 

To use the boundary condition , and by taking the second derivative of (4.2) 
then:  

. 

The above equation gives the deflection of the beam at a distance x. 

To find the maximum deflection, put  in equation (4.3).   

 
4.2 Solving the deflection of a beam carrying uniform distributed load using AL-Tememe 

transform 
AL-Tememe transform is used to solve the problem of deflection for a beam that carrying 

a uniform distributed load. After substituting each  by  equation (4.1) becomes:  

 

By taking AL-Tememe transform to both sides: 

,  

. 

. 

By taking the inverse of AL-Tememe transform to both sides: 

 .  

Now, we take  

 . 

After simple computations, we get:  

.  

Then  

. 

Also, we take 
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. 

After simple computations, we have: 
. 

As well as, we take: 

. 

After, simple computations, we have:  

. 

Now: 

. 

Also, . 

And, . 

Finally, 

. 
 

5. Conclusions  
There are many solutions to the beam deflection problem, however Al-Tememe 
transforms (Al-Tememe and Complex Al-Tememe) are never used before to solve this 
problem. The previous computations solved the beam deflection problem through the 
reduction of load that provided over the beam, by dividing the beam deflection equation 

by to became . Both transforms gave the same results therefore it is 

possible to use either of them to solve the beam deflection problem.  
 

REFERENCES  

[1] A. S., Hadi, M A. H. Mohammed, Z. M. Hussain. On Al-Temem Transform and Solving Some Kind of Ordinary 
Differential Equations with Initial Conditions and Without it and Some Applications in Another Sciences. A thesis 
of MSc. submitted to council of University of Kufa, Faculty of Education for girls. 2015. 
[2] S. F. Maktoof, A.H. Mohammed, Integral Transform for Solving Some Kinds of Differential Equations. A thesis 
of MSc. submitted to council of University of Kufa, Faculty of Education for girls. 2018. 
[3] M. Prajapati. Laplace Transform and its Applications, first edition. 2016. 

-Tememe Transformation 
Journal of AL-Qadisiyah for computer 

science and mathematics, Volume 9, Issue 2, 2017; Pages 88-93. 
-Tememe Transform to Solve System of Linear 

Second Order Ordinary Differential Equations with Varia
15, Issue 2, 2014, Pages 30-35. 
[6] Elaf Sabah Abbas, Emad Kuffi, Sarah FalehMaktoof Al Khozai, Solving an improved heat transmission 
measuring equation using partial differential equations with variable coefficients, International Journal of 
Engineering & Technology, Volume 7, Issue 4, 2018, pages 5258-5260  
[7] S.S. Rattan, strength of Materials, 2nd edition, Tata McGraw Hill: New Delhi, 2011. 
[8] James M. Gere, Barry J. Goodno, Mechanics of Materials, 7th edition, Cengage Learning: Canada. 
[9] Bedford, A. and Liechti, K.M., MechanicsofMaterials, Prentice Hall, Upper Saddle River, NJ, 2000. 
[10] Gere, J.M., Mechanics of Materials, 6th Edition, Brooks/Cole-Thomson Learning, Belmont, CA, 2004. 

        [11] Hibbeler, R.C., Mechanics of Materials, 5th Edition, Prentice Hall, Upper Saddle River, NJ, 2003. 
 
 

 



114 
 

FABER POLYNOMIAL COEFFICIENT BOUNDS OF THE MEROMORPHIC BI-
UNIVALENT FUNCTIONS ASSOCIATED WITH  JAC DERIVATIVE 

ABDULLAH  ALSOBOH*& MASLINA DARUS 

Center for Modelling and Data Science, Faculty of Science and Technology, UniversitiKebangsaan Malaysia, 43600 Bangi, 
Selangor DE, Malaysia 

E-mail:    P92712@siswa.ukm.edu.my* 

 
Center for Modelling and Data Science, Faculty of Science and Technology, UniversitiKebangsaan Malaysia, 43600 Bangi, 

Selangor DE, Malaysia 
E-mail:    maslina@ukm.edu.my 

 

ABSTRACT  

In this article, we introduce a new subclass of meromorphic bi-univalent functions, using 
kson derivative. We obtain the general coefficient estimates   for such  

functions belonging to this subclass  and  examine their early coefficient bounds by applying  
Faber polynomial coefficient expansions. 

Keywords: Analytic functions, Meromorphic functions, Bi-univalent functions, Faber 
polynomial, -calculus.    

1. INTRODUCTION  

We start by letting  and   be the class of meromorphic 
functions of the form 

. (1) 

that are univalent in    Its well known that every function  has an inverse   defined 
by 

.  

For  a brief history in the class ,  you can  see [2,4,12,14].  A univalent  function in  is 
said to be bi-univalent if its inverse map is also univalent there. The function   is said to 
be bi-univalent and  meromorphic if   The family  of these  functions is denoted by  

. Springer [14] proved   and conjectured that  

for  . The bounds for general coefficients  of meromorphic bi-univalent 
functions were obtained by Hamidi et al. [3] and they examined their early coefficient bounds. 

The Faber Polynomial expansion of the inverse map of    of the form (1), 
 

. 
(2) 

 
where   

. 
(3) 

and with  is a homogeneous polynomial of degree  in the variables 

. (see [1]). 
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The has   attracted  the attention of  researchers due to its several applications 
in different branches of mathematics, especially in geometric function theory. Jackson ([10,11]) 
initiated and developed the application of  . Chakrabarti and Jagannathan defined 
Jackson derivative as a generalization of  -derivative (see [8]). Al-Hawary et al. [5]  
introduced a new differential operator def derivative. Some  
applications of - 
et al. [7] .    

For the expedience,  we present  some definitions and concepts of calculus that 
were used in this article by assuming   and  are fixed numbers such that  . 

. (4) 

provided  exists, where the symbol, denotes twin-basic number given by 

. (5) 

Note that: For  and  , we have  

 for more details, see [10] 

 =  

It's clear that  for function of the form  (1), we have 

 

For , , and , we define new subclass of meromorphic bi-univalent 
functions, denoted by as: 

Definition 1.1:  A function  given by (11) is said to be in the class if the 
following conditions hold true

. (6) 

and 

. (7) 

where , , and  
We note from Definition 1.1  that 

Furthermore 

 

where the class  is defined and studied by Hamidi [3]. 
In this paper,  we obtain the bounds for the general coefficient  of the class of 

meromorphic bi-univalent functions  . We also determine  bounds for ,  , 
  and for  the combination using Faber polynomial expansions
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2. PRELIMINARIES 

In the following Theorem, we introduced an upper bounds for for the class   
. 

Theorem 2.1: Let  as in . For and if ), and
then 

. (8) 

Proof.Let  )as in (1) then we have  
 

. (9) 

and for , we have  

. 
(10) 

 

On the other hand, since  ), according to condition (6)implies that there 
exists  a positive real part function  . So that, 

 
(11) 

Similarly, for the inverse function and  according to condition(7) there exist a 
positive real part function . so that: 
 

 (12) 

Comparing the corresponding coefficients of (9) and (11) yields to 

. 

and similarly from (10) and  (12)  note that with we 
obtain: 

. (13) 

and so 

(14) 

 
By taking the absolute values of each above two equations and applying the 

CaratheodoryLemma(e.g., [2,9]), and we get

. 
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Corollary 2.1  Let as in .  For and if  ), and 
 then 

 

Corollary 2.2 [3]Let  as in (1).  For  and if ), and 
 then 

. 

By relaxing the coefficient restrictions imposed on Theorem 2.  we obtain estimates for 
early coefficient of functions ), and the combination . 

Theorem 2.2   For  and of the form (1) be in the class ), then 
we have the following consequence. 

 

 

 

 

Proof. Let  ) as in ,  and compare the Eqs.  and  for  and 
 we get 

 (15) 

 (16) 

 (17) 

 
and from Equations  (10) and (12)  for  , we have 

 (18) 

By solving equations (15), (16), (17) and (18) for   and , respectively, 
and taking the absolute value  then applying Caratheodory Lemma,  we will get 

  

  

  

and  

.  

 
By letting in  Theorem 2.2, we obtain the following consequence. 
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Corollary 2.3 Let of the form (1) be in the class ), and for and  
  then  

 

 

 

 

 
For in Corollary  2.3, we obtain the following consequence. 

Corollary 2.4 [3] Let of the form (1) be in the class ),and For and  
 then 

1)  

2)  

3)  

4)  
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ABSTRACT  

In this paper we study systems of difference equations numerically and theoretically. These 
systems were considered by many researchers. We will focus on the general form and the limits. 
We consider different orders of the difference systems. We use in certain cases the computer to 
verify the limit properties.  

Keywords: difference equations; limit; Gamma function 

1. INTRODUCTION 

Difference equations appear as natural descriptions of observed evolution phenomena because 
measurements of time evolving variables are discrete and as such, these equations are in their 
own right important mathematical models. More importunately, difference equations also 
appear in the study of discrimination methods for difference equations. Several results in the 
theory of difference equation have been obtained as more or less natural discrete analogues of 
corresponding results of difference equation. Recently many researchers worked in the topic of 
the behavior of the solution of difference equations. In the literature we can find  the works of 
them such as  Kurbanli, El- Metwally, Amleh, Elabbasy and Elsayed.  
In [7] El-Metwally, Elabbasy and Elsayed studied the following difference equation 

 

They found  the general form of the solution  in some cases, also They proved that every positive 

solution of this equation is bounded. In [3] Elsayed computed the general form of the solutions 

of difference equation  

.  

Further, he proved that every positive solution of this equation is bounded and  

 
In [1]Abuhayal considered the following system of difference equations: 

= ,    

 
Abuhayal calculated the solution for the system with the following initial values:  

 
In this solution we distinguish between odd and even terms. In [8]Yaqoub considered the 
following system of difference equations: 

,    

Yaqoub proved the following result: Let   be real numbers. The solution 
for the system with the following initial values: 
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,
is 

 

 
In [6] the following system of equations was studied by Ibrahim 

 

where  is a fixed real number. With the following initial condition 
,  . 

In [6] Ibrahim proved the following result: Let a ,b ,c ,d, r be positive real numbers. Then, the 
general solution of the system is 

, , 

 , 

,  

where 
, . 

 
In [4] Bany Khaled considered the system 
 

 

with initial values 
 

Hence, according to definition we obtain 
 

Bany Khaled proved an estimate for the solution. Based on it she proved:  If    and  

such that    then  

2. MAINRESULTS 

In this paper we consider thefollowing three systems 
 

(1) 

                                                          (2)    

 (3) 

 
We define 

=  ,   . 

 
We verified the following result by Mathematica for p>0: 
 

 (4) 

wheree a,x) is the incomplete gamma function. 
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7.1.  The limit of system (1) 

We consider the system (1) just in case of positive initial values and r. We will study first the 
following equation since this equation is separated than the second one. 
 
Lemma 2.1.Suppose . Then ,  n  
 
Proof: We start with 
 

since  

 
 
We consider this relation as basis step. We continue by induction: Suppose that  for 
some integer k. Then according to definition and that  
 

 

      After some calculations we prove  
 
Theorem 2.2Assume . Then  . 

 
We consider a special case, namely .In this case it is easy to compute the general solution. 
If we take the initial values 

 
 
Then we obtainfor  

 

and for  

,  

 

          We notice that we have a periodic solution, which consists of 6 elements. This is an 
essential change in the behavior of the sequence. It is an open problem, what will happen if r is 
negative. 

7.2. The general solution of system (2)  

We study now the system (2) with initial values 
 

. 
We find that in general 

 

 
Hence 

, 

 
where 
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We reachthe following result
 
Proposition 2.1 The general solution of the system (2) is 
 

 

 

Proof. We concluded previously  

 

If we set for n=  

 

 

where 

=
 

 
since 

= 
.  

 
 
 

Corollary 2.2 If  a> 0, then the solution of the system (2) tends to 

. 

Proof. We know

 

 

Since 
, 

as  

So, we are done  

7.3. The general solution of system (3) in case r = 1 

 
        We consider now the system (3) withthe following initial values  
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Proposition 2.3 If  a> 0, thenthe general solution of the system (3) is 

2 ck

c
x k ,     , 

 

 

 

 
Proof. According to definition 

 

 

where we denote by    (res.  ) the denominator of nx   (res.  ). Since the variables 

 and  are separated in the even and the odd cases we are going to consider just one case. 

Now, we obtain 
 

 

 

In general we denote by  

 

 
since . We conclude that 

, ,  

,  ,   

 

 

. 

 
We use the notation  

 

We rewrite 

3
3

1

322

2

334 rabaBr
aB

aB
bra

aB

aB
brabaH  

Thus the general form for  
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Since  

 

But 

 

Hence, 

 

 

=

, 

 

,   

 

 
Similarly we can prove the other case.  

REFERENCES 

[1] Manal A. Abu Alhayal, A Study on the Solutions of Rational Difference Equations with Hypergeometric 
Functions, Ms. C. thesis, Al-albayt university (2017). 

[2] A. M. Amleh, E. A. Grove and G. Ladas, On the recursive sequence , J. Math. Anal. Appl. 

233 (1999)790-798. 
[3] E. M. El-sayed,Dynamics of a Rational Recursive Sequence, International Journal of Difference Equations,       

Volume 4, Number 2 (2009) 185 200. 
[4] Intisar M. Bany Khaled, A study on boundedness and limits of the solution of system of difference equations,Ms. 

C. thesis, Al-albayt university (2019). 
[5] A. Kurbanli, On the Behavior of Solutions of the System of RationalDifference Equations: 

 

Discrete Dynamics in Nature and Society, Volume 2011 (2011). 
[6] Faiza D.Ibrahim, A study of the solution for systems of difference equations, Ms. C. thesis, Al-

albaytuniversity(2015). 
[7] H. El. Metwally, E.M. El-Abbasy, E.M. El-Sayed, The Periodicity Character of a Difference 

Equation,International Journal of Nonlinear Science(2009). 
[8] BatoolYakoub, A Study on the Solution of Rational Systems of Difference Equations, Ms. C. thesis, Al-albayt 

university, (2018). 
  



125 
 

ON THE WEIGHTED MIXED ALMOST UNBIASED LIU TYPE 
ESTIMATOR 

MUSTAFA ISMAEEL ALHEETY 
Department of Mathematics, University OF ANBAR, RAMADI, 54001,IRAQ 

 E-mail:    eps.mustafa.ismaeel@uoanabr.edu.iq* 
 

ABSTRACT  

This paper deals with a new version of weighted mixed estimator based on prior information in 
stochastic linear restricted model for the unknown vector parameter when stochastic linear 
restrictions on the parameters hold. The performance of the proposed estimator as a 
generalization of the weighted mixed estimator (WME),  the almost unbiased Liu estimator 
(AULE) and the least squares estimator (LSE) has been given in terms of the mean squares error 
matrix. Finally, numerical example from literature and simulation study have been given to 
illustrate the results. 

Keywords:  Mixed model; Stochastic linear restrictions  
 

1. INTRODUCTION  

We consider the standard multiple linear regression model  
          (1) 

Where Y is an  n x 1 vector of observations on the response ( or dependent) variable, X is an n 
x p model matrix of observations on p non-stochastic explanatory variables, is a p x 1 vector 
of unknown parameters associated with the p explanatory variables and  is an n x 1 vector of 
residuals with expectation E( ) = 0 and dispersion matrix  . 
It is well known that, the least squares is the best method for fitting model (1) . The least squares 
estimator (LSE) is define as:  

          (2) 
Where   the LSE in (2) is unbiased and has minimum variance among all linear 
unbiased estimators when it  satisfy it's conditions and one of these conditions is no high 
correlation between the independent variables. However, This is not the case many when the 
multicollinearity is present where there are many results have proved that the LSE is no longer 
a good estimator. 
To reduce the effect of multicollinearity, several techniques have been proposed. One of them 
is biased estimation technique that used as an alternative to LSE to obtain some reduction in 
the variance with some cost in the bias. Hoerl and Kennard (1970) proposed the ridge estimator 
(RE) as  

 
Where k > 0. Liu (1993) proposed Liu estimator (LE) as  

 
Where 0 < d <1. 
Since  is symmetric, there exists a pxp orthogonal matrix P such that  is a pxp 
diagonal matrix where diagonal elements  are the eigenvalues of  and  > > 

 . So, model (1) can be written in the canonical form as :  
          (3) 

Where Z= XP and  . Therefore, The LSE and LE are respectively  
          (4) 

And 
          (5) 

In order to reduce the cost of the bias in biased estimators with small change in the variance, 
Singh et al. (1986) introduced the almost unbiased ridge estimator (AURE) as: 

                                                           
* Corresponding author          
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(6)
Also, Akdeniz and Kaciranlar (1995) proposed the almost unbiased generalized Liu estimator 
(AULE) 

          (7) 
In addition to model (1), we suppose 
of a set of independent stochastic linear restrictions  

          (8) 
Where R is an q x p non zero matrix with rank       (R) = q < p,  is an q x 1 known vector which 
is interpreted as a random variable with E(  is an q x 1 vector of disturbances with 
zero mean and variance-covariance matrix  , V is known and positive definite . 
Also (8) can be transformed into the canonical form  where T= RP . It is clear that, the 
stochastic restrictions in (8) do not hold exactly but will hold at the mean . Further, it is also 
assumed that  is stochastically independent of  . By unifying the sample and prior 
information in a common model (see Rao et al. , 2008) 

           (9) 

Where E  and , we can use the least squares method for 

model (9) to get the mixed estimator (ME) which is introduced by Theill and 
Goldberger(1961). The ME is defined as follows :  

 .       (10) 
Since we assumed the stochastic restrictions are held, i.e. E( )  T  = 0, the mixed estimator 
is unbiased . 
In case the prior information and sample information are not equally important in model (1) with 
stochastic linear restrictions in (8) , Schffrin and Toutenburg (1990) introduced the weighted 
mixed estimator (WME) as follows: 

      (11) 
where  is a scalar weight. 
Chaolin Liu et al.(2013) proposed the weighted mixed almost unbiased ridge estimator as 
follows: 

 
, 

where    and . 
In this paper, we introduce a new type of weighted mixed estimator as a generalization of some 
other estimators. The proposed estimator and its properties is given in Section 2 . In section 3 
the performance of the new estimator compared with other estimators with respect to the mean 
squares error matrix as a criteria are given . 

2. THE NEW ESTIMATOR AND ITS PROPERTIES 

In the first, let us give some bases information that can help us to understand the proposed work 
in this paper. 
Lemma 1 : (See Rao et al. 2008) Let A: pxp, B:pxn, C:nxn and D:nxp. If all the inverses exist, 
then  

 
Lemma 2 : (See Farebrother 1979 ) Lel A be a p.d. matrix , c be an  non  zero vector and  be 
a positive scaler . Then  is p.d. if and only if  
Lemma 3: (See Rao et al. 2008 ) Let , j=1,2 be two linear estimators of . Suppose 

that is p.d. then                   is n.n.d. if and 
only if , where  denotes the bias vector of  . 
Lemma 4 : (Hu Yang et al., 2009 ) 
Suppose A is a real symmetric matrix, P is a matrix then  each 
eigenvalue of A is non negative .  
Using lemma 1, the WME estimator  can be rewritten as follows :  

    (12) 
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Now, if we replace with , we get the new proposed estimator as follows: 
 

  (13) 
Where . 
We are calling as the weighted mixed almost unbiased Liu estimator (WMAULE). 
Remark: As we mention in the first, the reason for considering the AULE is to reduce the bias 
of LE, at the same time there is a gain in the variance. Therefore, the hope these advantages 
will inherit to WMAULE . 
The WMAULE is general estimator that includes the LSE, the  ME and  the AULE estimators:  

 
If R=0, then 

 
And when w=1; 

 

The properties of the proposed estimator can be easily computed. Therefore, the expected value, 
the variance and the bias of the WMAULE are given as follows:  

 
 

 
 

Where  . The bias and the variance of an estimator  is measured 
simultaneously by the mean squares error matrix (MSE) 

.  
For this purpose , 

            (14) 
(15) 

 

3. SUPERIORITY OF THE NEW ESTIMATORS 

Let , i=1,2 be any two estimators. We know that  
 

, 
Where . If we want to know whether  is a positive 
definite (p.d.) or not , we may confine ourselves to the following fact : 

Since is a non negative definite (n.n.d) matrix and D is a p.d. This implies that 
 is a p.d. (see Rao et.al.2008). Thus,  reduce to the matrix type . 

Therefore,  is p.d. when A is p.d. 
Let us consider the difference among the estimators: 

, 
 

 
Where  

, 
. 

 
3.1 Superiority of the mixed almost unbiased Liu estimator 
 
We are searching now for the condition that makes the proposed  estimator is better than ME . 
For this reason , we need to check when is p.d. 
 D1 can be written as following : 

.
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But and each element of it is . When 

, it is clear that  and that means D1 is p.d. Therefore we have 

the following theorem: 
 
Theorem 1 
The proposed MAULE is superior to the ME in the MSE sense, namely,  if and only if 

. 
 
Let us rewrite D2 as follows: 

 
But , 

 
             (17) 

. Therefore the condition that makes D2 p.d. is reduced to the condition that 

makes . Let d be fixed for the moments, the condition 

 will reduce to condition 

 and this will satisfy when . 

In this case D2 will be p.d. and by using Lemma3 we have the following theorem. 
Theorem2 
The MAULE weighted estimator is superior to the mixed almost unbiased ridge in the MSE 

sense, namely, if and only if  for . 

Now, let k be fixed for the moments. To avoid  the  repetition, when 0 < k <1 and , 

D2 will be p.d. and by using lemma 3 we have the following theorm. 
Theorem 3 
The MAULE is superior to the  weighted mixed almost unbiased ridge estimator in the MSE 

sense, namely, if and only if  for .  

As is well known to us , the values of the parameters k,d,  and  are unknown, therefore we 
must estimate them as in previous studies (see Hoerl and Kennard (1970a,b) and also Liu 
(1993)) 

4. NUMERICAL EXAMPLE  

To illustrate the performance of the proposed estimator in the MSE, a numerical example is 
given . We consider the dataset on portland cement where it has been widely analyzed in 
literature (Hu Yang and Jianwen Xu (2007)) and  (Hu Yang et al. (2009) ). By using Lemma 4 
we can get  is non negative. 
Consider the following stochastic linear restriction: (see Hu Yang et al.,2009) 

.  and R=( 1 , -1 , 1 , 0 ) , where the LSE is 
 

By observing Table 1, we note that the performance of the new estimator is better for different 
values of k and d compared with ME and this result is consistent with the theoretical results in 
theorem 1 and 2 . 
The performance of new estimators influenced by the value of parameter k and d and this is 
evident in Table 2. Where in the case k is small, the estimator MAULE will be the best 
compared with weighted mixed almost unbiased ridge estimator and this preference decreases 
when the value of k is increased until to become better than MAULE when k=0.7 for all values 
d in this study .  
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Table 1 : Estimated eigenvalues of  and  for different values of d.  
w=0.05 

d 0.3 0.6 0.9 
 0.854746 0.350179 0.0000012 
 -0.004184 0.000862 0.0000035 
 0.000933 -0.000143 0.0000924 
 0.000165 0.000055 0.0239074 

    
w=0.1 

d 0.3 0.6 0.9 
 0.854647 0.350176 0.0239074 
 -0.002800 0.000699 0.0000671 
 0.000966 -0.000121 0.0000011 
 0.000154 0.000052 0.0000033 

    
w=0.35 

d 0.3 0.6 0.9 
 0.854517 0.350173 0.0239074 
 -0.001077 0.000406 0.0000302 
 0.000918 -0.000074 0.0000008 
 0.000108 0.000037 0.0000027 

    
w=0.75 

d 0.3 0.6 0.9 
 0.854491 0.350172 0.0239074 
 -0.000697 0.000296 0.0000199 
 0.000782 -0.000052 0.0000004 
 0.000061 0.000023 0.0000023 

    
w=0.95 

d 0.3 0.6 0.9 
 -0.000643 0.350172 0.0239074 
 0.000047 0.000274 0.0000181 
 0.000740 -0.000047 0.0000003 
 0.854488 0.000018 0.0000023 
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 k=0.1 
d 0.3 0.6 0.9 

 
 
 
 

35.1098 
0.0061 
0.2845 
0.8228 

12.5983 
0.2705 
0.0023 
0.0922 

2.64x102 
5.51x10-2 
4.91x10-4 
1.87x10-2 

 k=0.3 
d 0.3 0.6 0.9 

 
 
 
 

28.2066 
0.0048 
0.2349 
0.6771 

5.6952 
0.001 

0.0426 
0.1247 

2-6.90x10- 
1-1.46x10- 
3-1.30x10- 

-4.95x10-2 
 k=0.7 

d 0.3 0.6 0.9 
 
 
 
 

-8.0138 
-0.0013 
-0.0739 
-0.2107 

22.5114 
-0.0038 
-0.1922 
-0.5524 

-3.51x10 
3-6.10x10- 
1-2.85x10- 
1-8.23x10- 
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ABSTRACT  

We establish  the concept of  bipolar complex neutrosophic soft set (BCNSS) by extending the 
concept of  bipolar neutrosophic soft set (BNSS)  from real space to  the complex space. BCNSS 
is a hybrid structure of bipolar complex neutrosophic set (BCNS) and soft set, thus making it 
highly suitable for use in decision-making problems that involve positive and negative 
indeterminate data where the extra information provided by the phase terms of the complex 
numbers play a key role in determining the final decision. Based on this new concept we define 
the basic theoretical operations such as complement, subset, union and intersection operations. 
The basic properties are also verified. 

Keywords: bipolar complex neutrosophic set; bipolar neutrosophic soft set ;complex 
neutrosophic set; neutrosophic soft set 

1. INTRODUCTION 

A soft set is a set-valued map defined byMolodtsov [15], to approximately describe objects 
usingseveral parameters. Neutrosophy [17]  is a branch of philosophy which studies the origin, 
nature and scope of neutralities, as well as their interactions with different ideational spectra. 
Neutrosophic set [18] is a part of neutrosophy, handles uncertainty, indeterminacy and 
inconsistency. Both complex neutrosophic set [1] and neutrosophic soft set [14] are improved 
and  generalized models of the neutrosophic set but in different spaces. Complex neutrosophic 
set handles the neutrosophic data which has the periodic manner, while neutrosophic soft set 
provides a parameterization tool to hanle the neutrosophic data.Subsequently, these uncertainty 
sets have been actively applied in various decision making problems to handle all types of 
uncertainty [3-9]. 
 
A wide variety of human decision making is based on double-sided or bipolar judgmental 
thinking on a positive side and a negative side. A great deal of research have been 
conducted to integrate the idea of bipolarity in decision making techniques by virtue of 
the uncertainty sets like fuzzy, intuitionistic fuzzy, complex fuzzy , neutrosophic and 
complex neutrosophic sets [2,10-13, 16]. Motivated by  these results and as per our 
knowledge there is no work available on bipolar complex neutrosophicsoft set and its 
application.Acordingly, based on soft set theory, we introduced  bipolar complex 
neutrosophic soft set and its operations. The results of this paper can be applied in 
different decision-making problems. 

2. PRELIMINARIES 

This section provides  a brief  overview of  some concepts on  neutrosophic sets and  
complex neutrosophic sets. 
We begin by defining the cocepts of neutrosophic set, neutrosophic soft set and bipolar 
neutrosophic soft set. 
 
Definition 2.1.  Let    be a universe of discourse. A neutrosophic set  in  is defined as 

 , where  and  are the truth, 
                                                           

* Corresponding author          
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the indeterminacy and the falsity membership functions,  such tha t    and 
. 

 
Definition 2.2.  Let   be a universe and  b set of  parameters set. A pair  is called a 
neutrosophic soft set over , where  is a mapping given by . 
Where ) denotes the power neutrosophic set of  
 
Definition 2.3.   Let be a universe and E be a set of parameters. A bipolar neutrosophic soft 
set  in is defined as 

, where  
and . The positive membership 

degree denotes  the truth membership, indeterminate membership and false 
membership of an element corresponding to a bipolar neutrosophicsoft set and the negative 
membership degree  denotes the truth membership,indeterminate membership and 
false membership of an element to some implicit counter-property corresponding to a 
bipolar neutrosophic soft set . 
 
Definition 2.4.   Let   be the universe. A complex neutrosophic set   in  is defined as 

, where  and  are complex-valued truth, 
indeterminate and false membership functions and are of the form , 

  and  By definition, and 
,  are, respectively, real valued and , such that 

 
 
Definition 2.5.A bipolar complex neutrosophic set  in  is defined as: 

 , where  
 and . A bipolar complex neutrosophic number 

can be represented as follows.  
 

3. BIPOLAR COMPLEX NEUTROSOPHIC SOFT SET 

 
Definition 3.1.  Let  be a universe,  be a set of  parameters. A bipolar complex 
neutrosophic soft set (BCNSS)  is defined as: 
 

 

, where 

and , 
such that : 

and  . The positive 
membership degrees denotes, respectively the complex valued truth, indeterminacy, 
and falsity membership degrees of an element  to the property corresponding to a BCNSS 

, and the negative membership degrees  are to denote the complex valued truth, 
indeterminacy, and falsity membership degrees of an element  to some implicit counter-
property corresponding to a BCNSS . 
 
The following example illustrates the definition of the BCNSS. 
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Example 3.2.Let  be a universe and be a set of parameters . Then 
the BCNSS  is defined as below: 
 

= 

 

 

 

 
Now we put forward the definition of the empty BCNSS and the definition of the absolute 
BCNSS. 

 
Definition 3.3.Let  be a BCNSS over . Then  is said to be empty BCNSS 
denoted by , if  and  

and defined as : 
. 

 
Definition 3.4. Let  be a BCNSS over . Then  is said to be absolute BCNSS 
denoted by , if  and  

and defined as : 
. 

 
In the following , we introduce the concept of the complement of the BCNSS. 
 
Definition 3.5. Let  be a universe of discourse and  be a BCNSS on . 
The complement of   is denoted by  and is defined as: 

 
, where 

 

 

 

 

, 

 
 
 

Example 3.6.Consider Example 3.2.  By  Definition 3.5,  we obtain the complement of the 
BCNSS  given by 
 

= 
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Proposition 3.7.  If  is a BCNSS over the universe . Then  
 
Proof.  The proof is straitforward from Definition 3.5.  

 
Now, we establish  the definitions of the subset, union and intersectionof two BCNSSs. 

 
Definition3.8. For two BCNSSs  and  over  .  A BCNSS  is contained 
in the BCNSS  , denoted as if and only if: 

 
(1) , and   (2)  

 and 

 
 
Definition 3.9.LexX be a universe. The union (intersection) of two BCNSSs  and 

denoted as is a  BCNSS , where  and  
, 
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Proposition 3.10.  The following properties are hold for the BCNSSs  , and 
 

 
     (1)

8. CONCLUSION 

We established the concept  of  bipolar complex neutrosophic soft set (BCNSS) as a 
generalization of both bipolar complex neutrosophic set and bipolar neutrosophic soft set. 
Some essential operations such as complement, subset, union and intersection with their 
properties  are defined and verified.  BCNSS seems to be a promising new concept, paving the 
way toward numerous possibilities for future research. We intend to investigate this concept 
further to develop some real applications. 
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ABSTRACT  

This work aims to develop a reliable approximation tool to solve the nonlinear fractional 
integro-differential equations that include a Fredholm operator under Caputo fractional concept. 
The proposed technique is mainly based on the use of residual power series method combining 
the generalized Taylor's series and residual error function. This technique can be applied directly 
to the solutions of nonlinear phenomena without the need for linearity or set any limitations on 

this technique, numerical example is performed. The results are carried out using the 
Mathematica software package, which indicate that the method is straightforward, and 
convenient for approximate rough solutions for nonlinear fractional models arising in various 
fields of applied science.  

Keywords: Caputo fractional derivative; residual power series method; analytical solution; 
Fredholm integro-differential equations. 

 

1. INTRODUCTION  

The fractional differentiation and integration theory is indeed a generalization of ordinary 
calculus theory that deals with differentiation and integration to an arbitrary order, which is 
utilized to describe various real-world phenomena arising in natural sciences, applied 
mathematics, and engineering fields [1-3]. Many mathematical forms of real-world issues 
contain nonlinear fractional integro-differential equations (FIDEs). Since most fractional 
differential and integro-differential equations cannot be solved analytically, thus it is necessary 
to find an accurate numerical and analytical methods to deal with the complexity of fractional 
operators involving such equations. Anyhow, in recent times, many experts have devoted their 
interest in finding solutions of the fractional integro-differential equations utilizing different 
analytic-numeric methods. For instance, Adomian decomposition method, variational iteration 
method,chebyshev wavelet, Legendre ploynomail method, multistep approach, and 
reproducing kernel method [4-14]. 

The basic goal of the present work is to introduce a recent analytic-numeric method based 
on the use of residual power series technique for obtaining the numerical approximate solution 
for a class of nonlinear fractional Fredholm integro-differential equations in the form 

 (1) 

with the initial condition  
 (2) 

where  denotes the Caputo fractional derivative,  and  are smooth functions. 
Here,  is unknown analytic function to be determined. 
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The residual power series (RPS) method is a recent analytic-numeric treatment method 
based on power series expansion was proposed by Abu Arqub in [15] to provide analytical 
series solutions of first and second-order fuzzy differential equations. The method is easy and 
applicable to find the series solutions for several types of the non-linear differential equation 
and integrodifferential equations of fractional order without being linearized, discretized, or 
exposed to perturbation. The RPS method has been successfully applied to solve linear and 
non-linear ordinary, partial and fuzzy differential equations for more details, see [16-26]. 

The rest of the current paper is as follow: In next section, we introduce some essential 
preliminaries related to fractional calculus and fractional power series representations. In 
Section 3, we illustrate the solution methodology by using the RPS technique. In Section 4, 
illustrative problems are given to demonstrate the simplicity, accuracy, and performance of the 
present method. Finally, we give concluding remark in Section 5. 

2. PRELIMINARIES  

In this section, we recall some definitions and basic results concerning fractional calculus and 
fractional power series representations [27-34].  
 
Definition 2.1: The Riemann-Liouville fractional integral operator of order ,  over the interval 

 for a function    is defined by 
 

. 

 
Definition 2.2: For . Then the following fractional derivative of order  
 

 

 

 for  is referred to the Caputo fractional differential operator of order . 

In case  , then  . 
 

The following are some interesting properties of the operator : 

 For any constant  , then , 

  

 , 

  

 
Definition 2.3: A fractional power series (FPS) representation at  has the following form 
 

 

 

where  and , and  
Theorem 2.1:Suppose that  has the following FPS representation at  
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where  and  for 

, then the coefficients  will be in the form such that 

 ( -times). 

3. CONSTRUCTION SOLUTION BY RPS ALGORITHM 

The purpose of this section is to construct FPS solution for non-linear fractional Fredholm 
integro-differential equations (1) and (2) by substitute its FPS expansion among its truncated 
residual function.The RPS algorithm proposed the solution of Eqs. (1) and (2) about   has 
the following FPS expansion: 

 (3) 

 
For obtaining the approximate values of Eq. (3), consider the following th-FPS 

approximate solution 

 (4) 

 
Clearly, if . So, the expansion (4) can be written as 
 

 (5) 

 

Define the so-called the residual function for Eqs. (1) and (2) as follows: 

 (6) 

and the following th-residual function 

 (7) 

As in [21-25], some useful properties of residual function 
 

 , for each . 

  for each . 

For obtaining the coefficients , , solve the solution of the following 
relation: 

 

 
(8) 

4. NUMERICAL EXAMPLES  

This section aims to test two nonlinear FFIDEs in order to demonstrate the efficiency, accuracy, 
and applicability of the present novel approach. Here, all necessary calculations and analyses 
are done using Mathematica 11. 
 
Example 4.1: Consider the following nonlinear fractional Fredholm integro-differential 
equation 
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 (9) 

with the initial condition  
 (10) 

Here, the exact solution at  is given by . 
Using the RPS algorithm, The -th residual function  is given by 

 (11) 

where  has the form 

 

Consequently,  

 

 
The absolute errors are listed in Table 1. The results obtained by the RPS method show that 

the exact solutions are in good agreement with approximate solutions at ,  and step 
size . While Table 2 show approximate solutions at different values of  such that 

 with step size . From the table, one can be found that the RPS method 
provides us with an accurate approximate solution, which is in good agreement with the exact 
solutions for all values of   in . 

Table 1: Absolute error for Example 4.1 at  

    
    
    
    
    

Table 2: Numerical results for Example 4.1 for different values of  

CONCLUDING REMARKS 

The present paper aims to solve a class of nonlinear fractional Fredholm integro-differential 
equations of order , based on the use of RPS algorithm. The solution methodology 
depends on the constructing of the residual function and applying the generalized Taylor 
formula under the Caputo fractional derivative. The proposed algorithm provides the solutions 
in the 
nature, sort of classification or perturbation. Numerical results are performed by Mathematica 
10. The results demonstrate the accuracy, efficiency and the capability of the present method. 
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Therefore, the RPS algorithm is reliable, effective, simple, straightforward tool for handling a 
wide range of nonlinear fractional integro-differential equations. 
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ABSTRACT 

 Different kinds of estimators have been proposed as an alternative to the ordinary least squares for 
estimating the coefficients of the multiple linear regression model in the presence of multicollinearity. 
We estimated the parameters of this linear model by two methods: the least squares and the latent roots 
method. A comparison between these two methods is given through the application of the economic 
growth data of the UAE to study the effect of the population size, exchange rate, total exports and the 
total imports on the economic growth. It is shownthat all the explanatory variables using the latent roots 
method have an effect on the economic growth and this effect is significant, whereas these variables are 
not significant using the least squares method. 
Keywords:   Regression; Multicollinearity; Least Squares; Correlation Matrix; Eigen Values; Eigen 
Vectors ;Latent Roots 
 
1. MULTIPLE LINEAR REGRESSIONMODEL 

The study of any particular phenomenon requires the identification of the factors 
influencing this phenomenon and the formulation of the relationship between these factors in 
the form of a model that expresses them. This model may be represented by one or several 
equations. In terms of a single equation, it may be simple or may be multiple. Common forms 
of use include a linear one that takes a mathematical form in writing and including more than 
one explanatory variable. This model will be used in this research and the general formula for 
this model is (Yan & Gang Su, 2009): 

Where: 
is (n×1) vector of observations of the response variable. 

X: is (n×k); k=p+1,matrix of observations of the explanatory variables whose first column 
contains the values of one. 

is (k×1) vector of the parameters to be estimated. 

is (n×1) vector of random errors. 
In order to estimate the parameters of the model and to ensure that the estimations have 
desirable properties, there are certain hypotheses that must be met (Chatterjee& Price, 2000). 
 

2. LEAST SQUARES METHOD 
 This method is one of the most widely used methods for estimating the parameters of 
the linear regression model. The least squares estimate of the regression parameters in this 
method are(Kutner et al., 2005 ): 

 

Here are the properties of this method(Draper & Smith, 1981)(Fisher, 1981&Mason) and 
(Gunst& Mason, 1980): 
1. Linearity :the estimated parameters in this method are linear in terms of the response 

variables : 

 

2. Unbiased :That is, the expected value of the estimated parameters is equal to its real 
value: 
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3. Variance: The variance of the estimated parameters is minimum ,where 

 

and  

3. THE CONCEPT OF THE MULTICOLLINEARITY IN THE REGRESSION 
MODEL 

Multicollinearity is one of the problems that occur in many cases due to the existence of a 
relationship between the explanatory variables. The existence of the complete multicollinearity 
between the variables leads to making the matrix not of full rank, ie, its determinant  is 
zero. Thus, it is difficult to find the inverse of this matrix, Which means that the regression 
parameters can not be estimated using the Least Squares method. The existence of an 
incomplete but powerful multicollinearity leads to the amplification of the variance and thus 
the acquisition of inaccurate capabilities(Dounald, 1987) and (Chatterjee et al., 2000). 
 
 
4. DETECTING MULTICOLLINEARITY IN THE REGRESSION MODEL 
        Multicollinearitycan be detected by many methods(Draper & Smith, 1981),(Fisher, 
1981&Mason) and (Gunst& Mason, 1980): 
1. The correlation coefficients matrix:  
2. Determinant of matrix:   
3. Latent values for ( ) matrix:  

 
5. SOLUTION OF MULTICOLLINEARITY 
           There are several methods proposed to minimize the effect of multicollinearity, Such as 
(Fisher & Mason, 1981): 
1. Delete the explanatory variables that are associated with other variables in order to get rid 

of the effects of this link and this deletion process according to certain criteria proposed to 
delete the specific variables. 

2. Add new data to the original data. 
3. Use biased estimation methods. 
6. LATENT ROOTS METHOD 
         This method was proposed in 1973 by Hawkins, the idea of this method is to find the 
latent roots of the correlation matrix and then to exclude the roots that are not important in the 
prediction process. The following is a detailed explanation of this method (Mason, 
1986):Correlation matrix is obtained by multiplying the transpose matrix (A) and the same 
matrix ie: 

 
Where: 
A: Is the standardized information matrix which contains the standardized values of the 
response variable and the standardized values of the explanatory variables: 

 
R: the Correlation matrix between all variable, it is defined as follows: 

 

Latent roots:latent values and latent vectors, are obtained according to the following formula: 
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The estimation of the regression parameters vector  by Least Squares Method that based on the 
latent roots, are as follows: 

To find the Latent Root Estimators, all the values and vectors that are not significant in the 
prediction are deleted from the equation (4), the roots that meet the following conditions are 
deleted: 

 
The remaining latent roots are less than or equal to p, denoted by q, and estimated by the Latent 
Roots Method are as follows: 

LatentRoot estimators have the following properties:
1. Bias: The Latent Root estimator is biased and its bias is: 

2. The variance: The variance of the Least Squares estimators in terms of latent roots is: 

The variance of the Latent Root estimators is : 

The variance of the ith estimator is:

 

3. Mean Squares Error: Since the Latent Roots estimator is biased, this makes the mean 
squares error as follows: 

 

Basilevsky in 1994 suggested a approximation of the mean squares error for the Latent Roots 
estimator as: 
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7. APPLICATION PART 
         A comparisonbetween the least squares and the latent roots regression methods is given 
through the application of  the economic growth data of the UAE (Alsaffar, 2016).The data 
represent the Economic growth (Y) and four explanatory variables for the period (1999-2008). 
The explanatory variables are: (X1) Population size;(X2) Exchange rate; (X3) Total export; (X4) 
Total imports. 
7.1The correlation matrix is given in table (1) below: 
 

Table (1): The simple correlation coefficient between the explanatory variables and the 
independent variable 

 Y X1 X2 X3 X4 
Y 1 0.9461 0.9942 0.99 0.9847 
X1 0.9461 1 0.9504 0.9269 0.9057 
X2 0.9942 0.9504 1 0.9954 0.9919 
X3 0.99 0.9269 0.9954 1 0.9935 
X4 0.9847 0.9057 0.9919 0.9935 1 

7.2The Latent Roots and Latent Vectors of the Correlation Matrix were found using a program 
written in the MATLAB language 
7.3Table 2 gives the values of the latent roots and vectors for this data set .It also checks the 
multicollinearity between the variables according to the following conditions: 

 
Table( 2): Test results

i   Conditions 
0 0.0003 -0.053 Two holds 
1 0.0052 -0.0518 Two holds 
2 0.0097 0.8871 One holds 
3 0.1122 0.0636 Two holds 
4 4.8726 0.4512 One holds 

The above table shows that three values satisfy the two conditions. This means that 
there is a multicollinearity between these variables, so the Latent Root estimators and its 
variances will depend only on the remaining two values i.e q = 2.  
7.4Table 3 gives the values and the variances of the estimated regression parameters using 
Ordinary Least Squares equation (2).  

Table (3): Estimators, variances and the t- test values of the regression coefficients in the 
Least Squares 

i  V( ) t( ) 
1 -0.2037 0.3087 -0.3667(N.S) 
2 1.7528 4.4836 0.8278(N.S) 
3 -0.0104 0.4892 -0.0148 (N.S) 
4 -0.5592 1.4585 -0.463(N.S) 
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We see from the above table that all variables are not significant .Table 4 gives the values and 
the variances Using Latent Roots method equation (5). 

Table (4): Estimators, variances and the t- test values of the regression coefficients in the 
Latent Root 

i  V( ) t( ) 
1 0.196 0.0001386 16.6482 
2 0.2168 0.000154 17.4742 
3 0.2369 0.0001578 18.8614 
4 0.3577 0.0001885 26.0558 

We see from the above table that all variables are significant. 
7.5 MSE is estimated for the two methods according to equations (4) and (9) respectively is as 
in table 5: 

Table (5): MSE for Ordinary Least Squares and the Latent Roots before deletion 
The method  Part1 Part2 MSE  

Least Squares 0.0471 6.7401 0 6.7401 98.89% 
Latent Roots 0.0497 0.0006388 0.0028 0.0034 98.76% 

Notice that the MSE for Latent Roots method is lower than that for Least Squares method as 
well as the value of R2.The MSE and the coefficient of determination values for both methods 
after ignoring the non-significant variables is given as: 
 
 
 

Table (6): MSE for the Least Squares and Latent Roots after deletion 
The method  MSE  

Least Squares There are not significant parameter 
Latent Roots 0.0497 0.0034 98.76% 

     From the above table we conclude that the estimated model using the Latent Roots method 
is better than the estimated model in the Least Squares method taking in consideration the 
number of significant variables for both methods . 
7.6 After deleting the variables that are not important in the prediction process, the estimated 
regression equation in the Latent Roots method is: 
 

  . 
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ABSTRACT  

A class of complex-valued harmonic univalent functions defined by convolution   differential 
operator is introduced. Coefficient bounds, distortion theorem, and other properties of this class 
are obtained. 

Keywords: Harmonic functions; convolution;  differentialopertator. 

1. INTRODUCTION  

In any complex domain  a continuous function  is said to be harmonic in  if both 
 and  are real harmonic in . In a simply connected domain  a harmonic complex-

valued function might be expressed in term of analytic functions, and ; as . We 
call h the analytic part and g the co-analytic part of f . A necessary and sufficient condition for 
f to be locally univalent and sense preserving in  is that  in  (see[4]). 
Denote by  the family of functions , that are harmonic univalent and sense 
preserving in the unit disc  for which . Thus for 

 in  we may express the analytic functions  and  as 
and  

 
Note that the family of harmonic univalent functions , reduces to the class of analytic 
functions , which can be written in the form 

 

 
if the co-analytic part of  is identically zero that is . 
 

In the negative counter part, let  be donate the subclass of  consisting of all functions 
where  and  are given by 

 
and  

See [16]. 
 

In [14] Ruscheweyh defined the differential operator 
 

where  and  
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If  is an analytic function of the form  , then  

 

 
where . 
In [15] Salagean defined the following differential operator 

 
where  and  

 
 

 
 
 

 
If  is an analytic function of the form  , then  

 

 
Later Al-Oboudi [1] introduced a generalisation of Salagean operator which defined as follows: 

 
where  and  

 
 

 
 
 

 
If  is an analytic function of the form  , then  

 

In [5] Darus and Al-Shaqsi introduced the differential operator 
 

where  and  
 

 
 
 
 

 

If  is an analytic function of the form  , then  

 

 
In [10] Lupas considered the differential operator which is the convolution of and 
.More precisely, 
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In [2] Andrei considered the differential operator which is the convolution of 

and   More precisely, 
 

 

 

 
To this end, the platform is ready to construct new convoluted differential operator. 

Let usconsider the differential operators and . Then, the convoluted operator of both 
of them is 

 

 

 

 
In 2002 Jahangiri et al. [7] introduced the modified Salagean operator of harmonic 

univalent function. In 2003; Murugusundaramoorthy [13] introduced the modified Ruscheweyh 
of harmonic univalent function. In the next definition we will modify the operator  to 
harmonic univalent function. 
 
Definition 1.1. For harmonic function , we define the following differential 
operator 

 
where  . 
 
Recently, many researchers have showed an interest to invent classes of harmonic functions 
defined by differential operators, convolution, and subordination. See [3], [6], [8], and [9]. 
 

We let  denote the family of harmonic functions  for which 
 

 

We further denote by , the subclass of   where 
 

2. COEFFICIENT BOUNDS 

In this section, coefficient bounds of the classes and  are given. 
 
Theorem 2.1. Let  be harmonic function, . 
If  
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where 
 

 
Then  is sense preserving, harmonic univalent in and . 
 
Proof.Note first that 

 

 

 
so that  is locally univalent and sense preserving. 
 

To show that  is univalent in , we consider that the restriction in the theorem  hold. 
If  then  is analytic. And then, the univalenceof comes from its close-to convexity. 
If and ,  are any distinct points in , then 

 

 

 

 

 

 
 
Therefore,  is univalent. 

Using the fact that if and only if it suffices to show that 

 

 
To do so, we have 
 

 

 

 

 

which is nonnegative by the theorem restriction, and so 

Next theorem provides a coefficient bounds for the class . 
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Theorem 2.2.Let be harmonic function. Then if and only if 

 

 
Proof.Since we only need to prove the (only if) part of the 
theorem. To do so, assume that Then by the assertion we have 
 

 

 

If we choose to be real and let we get 
 

 

Which is precisely the assertion of Theorem 2.2.  
 

3. DISTORTION THEOREM AND EXTREME POINTS 

In this section, distortion theorem of the class is obtained. 
 
Theorem 3.1.If , 

,  then  

 

and 

 

 
Proof.The proof follows,immedeality, by the coefficient bound of the class 

.  
 
 

REFERENCES  

9. [[1] Al-Oboudi, F. (2004).On univalent functions defined by a generalized Salagean operator. International 
Journal of Mathematics and Mathematical Sciences, 2004(27), 1429-1436. 

10. [2] Andrei, L. (2014). Differential Sandwich Theorems using a generalized Salagean operator and Ruscheweyh 
operator. Didact. Math.(submitted). 

11. [3] Catinas, A., &Sendrutiu, R. (2020). On harmonic multivalent functions defined by a new derivative 
operator.Journal of Computational Analysis & Applications, 28(1). 

12. [4] Clunie, J., &Sheil-Small, T. (1984). Harmonic univalent functions. SuomalainenTiedeakatemia Ann. of the 
Sci. Acad. of Finland, Ser. A, 1: Math., 9, 3-26. 

13. [5] Darus, M., & Al-Shaqsi, K. (2008). Differential sandwich theorems with generalised derivative operator. 
International Journal of Computational and Mathematical Sciences, 2(2), 75-78. 

14. [6] Gupta, V. K., & Sharma, P. (2019). Wright generalized hypergeometric inequalities of univalent harmonic 
mappings defined by shearing of analytic functions. Palestine Journal of Mathematics, 8(1), 169-183. 

15. [7] Jahangiri, J. M., Murugusundaramoorthy, G., &Vijaya, K. (2002). Salagean-type harmonic univalent 
functions. Southwest Journal of Pure and Applied Mathematics, 2002(2), 77-82. 

16. [8] Li, S., Tang, H., &Ao, E. (2019). Certain Subclasses of Harmonic Univalent Functions Defined by 
Convolution and Subordination. Journal of Mathematical Research with Applications, 39(1), 31-42. 



154 
 

17. [9] Li, S., Li-Na, M., &Huo, T. (2019). Some classes of harmonic mappings with analytic part defined by 
subordination. Turkish Journal of Mathematics, 43(1), 172-185. 

18. [10] Lupas, A. (2011). A note on strong differential subordinations using Salagean and 
Ruscheweyhoperators.LibertasMathematica, 31, 15-21. 

19. [11] Lupas, A. (2009). On a certain subclass of analytic functions defined by Salagean and Ruscheweyh 
operators. Journal of Mathematics and Applications, 31, 67-76. 

20. [12] Lupas, A. (2010). On a subclass of analytic functions defined by Ruscheweyh derivative and generalized 
Salagean operator. ActaUniversitatisApulensis, (22), 17-22. 

21. [13] Murugusundaramoorthy, G. (2003). A class of Ruscheweyh-type harmonic univalent functions with 
varying arguments. Southwest J. Pure Appl. Math, 2, 90-95. 

22. [14] Ruscheweyh, S.(1975). New criteria for univalent functions, Proceedings of the AmericanMathematical 
Society, 49(1), 109-115. 
23. [15] Salagean, G. S. (1983). Subclasses of univalent functions, In Complex Analysis Fifth Romanian-Finnish 

Seminar . Springer Berlin Heidelberg, 362-372. 
24. [16] Silverman, H. (1998). Harmonic univalent functions with negative coefficients. Journal of Mathematical 

Analysis and Applications, 220(1), 283-289. 
  



155 
 

STOCHASTIC DELAY DIFFERENTIAL EQUATIONS OF PREY 
PREDATOR SYSTEM WITH HUNTING COOPERATION: ANALYRIC 

AND NUMERIC 
 

Fathalla A. Rihan&Hebatallah J. Alsakaji 

Department of Mathematival Sciences, United Arab Emarites University, Al-Ain, 15551, UAE 
E-mail: frihan@uaeu.ac.ae&:  heba.sakaji@uaeu.ac.ae 

 

ABSTRACT  

In this paper, we investigate the dynamics of  a stochastic delay differential equations (SDDEs)  
of predator-prey system  with hunting cooperation on predator. To prove the existence of global 
positive solution, we  use Milstein's scheme, to solve  SDDEs of  the   prey-predator system. 
Sufficient criteria for global existence are obtained. The increase of the noise intensity has a 
drastic impact on the dynamical behavior of both species with or without the delay effect. Time-
delay plays a vital role in population dynamics of prey-predator, which has been recognized to 
contribute critically to the stable or unstable outcomes of prey population due to predation. 
Illustrative numerical examples are provided to show the effectiveness of the theoretical results.   

Keywords: Hunting cooperation; Milstein's scheme; Stochastic Prey-Predator model; Time-
delay 

1. INTRODUCTION  

The study of prey-predator systems between two or more species to model life system 
interactions is an important issue in biological systems (see, e.g., [5, 6, 10]). The dynamical 
relationship between predator and their preys has been essential in theoretical ecology since 
the famous Lotka-Volterra equations [7, 13], which is a pair of first order, nonlinear 
differential equations that describes the dynamics of biological systems in which two species 
interact. The system parameters have main role to determine the qualitative properties of 
predator prey systems. 

One major component of the predator-prey relationships is functional response, which is 
refer to the change in the density of prey attached per unit time per predator as the prey 
density changes. In [3], Holling discussed three different types of functional response to 
model the phenomena of predation, the Holling type-I is of the form p(x) = nx and the Holling 
type-II is of the form p(x) = nx/(b + x), where x is the population density, n is the maximum 
rate of predation, and b is the half saturation constant. Predator hunting cooperation can be 
considered in the formulation of functional response, depends on prey and predator densities. 
Consuming rate by predator increases as predator density increase. Thus, when the prey 
density become low, hunting cooperation can be adverse to predator population itself. 

Time-delays (time-lags) are incorporated into biological systems to represent the time 
requiredfor maturation period, reaction time, feeding time, etc. See [9]. Herein, we 
incorporate time-delay in the model for the gestation period of preys. It is also interesting to 
study the impact of hunting cooperation in the dynamical complexities for the underlying 
model. 
Systems are often subject to environmental noise, which is important factor in ecosystems, to 
suppress a potential population explosion. In reality, natural phenomena counter an 
environmental noise and usually do not follow strictly deterministic laws but oscillate 
randomly about some average values, so that the population density never attains a fixed value 
with the advancement of time [2, 11]. Furthermore, environmental stochasticity can affect 
large populations, as well as small. In [1] the authors studied the effect of environmental 
fluctuations on acompetitive model for two phytoplankton species where one species liberate 
toxic substances by considering a discrete time delay parameter in the growth equations of 
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both species. Recently, some authors include the environmental noise into deterministic 
biological models to show the stochastic perturbation effects. 
In this paper, we deal with stochastic delayed prey predator model with hunting cooperation 
on predator. In Section 2, we formulate a SDDEs prey predator model then we discuss the 
qualitative behavior of the deterministic model and study the existence and uniqueness of 
global positive solutions. Some numerical simulations are obtained in Section 3. Section 4 
contains conclusions. 

2. MODEL FORMULATION AND MAIN RESULTS 

Consider the following prototypical delayed predator-prey model considering intra-specific 
com- petition among predator and delay logistic growth functions for the prey 
 

 

 

 
 
(1) 

 

with initial conditions 

x( )= 1( )>0 [ 1,0) 1(0)>0, 

y( )= 2( )>0 [ 2,0) 2(0)>0 

 

(2) 

 

where x(t) and y(t) stands for population densities of prey and predator. The time delays 1, 2 
isincorporatedtoconsiderthegestationtime, 1and 2arecontinuousboundedfunctionsin the 
intervals [ 1, 0] and [ 2,0] respectively.  The intrinsic growth rate of prey is denoted by r, 
where K is the environmental carrying capacity, is the death rate for predator, a is the 
predatorintra-specificcompetitionrate.Functionalresponsef(x,y)dependonbothpredator 
andpreydensitiesandµistheconversionefficiency(0<µ<1).AssumethattypeIIfunctional 
response has the form (1 + ), where is the consumption rate of prey by their predator 
and c is the handling time of the predator. We presume consumption rate depending on the 
predatordensitytoinducepredatorcooperationforhuntingtheprey.Therefore,wetake >0 is the 
cooperativehunting parameter.Hence,the functionalresponse takes theformf(x,y)= 
(1+ )x/(1+c(1+ )x). 

 
Herein,wewillstudytheeffectoffluctuatingenvironmentonthedynamicbehaviorof(1),with 

time delays ( 1& 2) which are introduced in the growth components for each of the species. 
In ordertostudytheeffectofenvironmentaldrivingforceonthedynamicbehaviorofthedelayed 
model we incorporate white noise terms into the growth equations of both prey and predator, 
thencorrespondingtosystem(1)weobtainedthefollowingstochasticdelayedmodel 

 

 

 

 
 
(3) 

 

 

with initial conditions (2), by assuming [ 0] = max 1 2}, i.e. (x0, y0) = ( 1 2)T  

 with  if  its norm is denoted by

 are standard independent Wiener processes defined on a complete 
probability space  with a filtration  satisfying the usual conditions; and 

 are the positive intensities of white noises. 
 



157 
 

3. QUALITATIVE BEHAVIOUR OF THE DETERMINISTIC MODEL

Before analyzing the dynamics of model (3), we discuss the following results for the delayed 
model (1) with initial conditions (2), for simplicity we consider K = 1, then the Jcobian matrix 
at the interior equilibrium  is given by 

 

 

 
 

 

 (4) 

 

 

(ii) (iii)  

 

25.  

       (5)
 

 

where  and  The local stability 
of  
depends  on  the values  of  q1 & q2. Therefore, equation (6) has  positive  
root if  >0 and < 0, therefore, it has a pair of pure imaginary roots of 
the form , then from (5) we get 

 

(7) 

 

where j = 0, 1, 2,. .. , we arrive at the following theorem: 

Theorem 1  The interior equilibrium point  will be stable for , where  is obtained 
from (7) by taking j =0 from..  For ,   will be unstable, and for  it has a periodic 
solution. 

Now we study the existence of Hopf bifurcation with respect to the bifurcation parameter . 

Theorem 2  System (1) undergoes Hopf bifurcation at the interior equilibrium when
 

where  is given by (7), such that  
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Proof: We differentiate (5) with respect to , then substitute after simplifying we 
obtain 

 

(8) 

25.1. Existence and uniqueness of the global positive solution 

Herein, we will show the positivity of solution for model (3) and we will prove that the 
enviromental noise holds the explosion for the delay  equation. 

 

Theorem-3 Let  and , then for any given initial 
value  there exist a unique positive solution 

 

To (3) on   and the solution will remain in  with property one. 
 

Proof: From the biological point view, we will take into our consideration the positive solution 
to model (3), assuming that ,   

an be reformulated as follows 

 

 

 
 

All the of (9) satisfy the local Lipschitz condition, then for any initial values 
 there is a unique local solution n(t), p(t) on , where 

 is the explosion time. In order to show that the solution is global, it is sufficient to show  

 a.s. Let  be sufficiently large so that 

 all lie within the interval . For each integer , define the 

stopping time 
 

 
 

where we set   We consider  is increasing as   . Let  then  
a.s. If we show   a.s. and  a.s. for all . To show this statement, we define a 

- function   by  

Where  and It is 
easy to see that function V(Z) is non-negative. The rest of the proof follows that of [8]. 

4. NUMERICAL SIMULATIONS 

In this section, we carry out some numerical simulations to display the qualitative behaviors of 
model (3) for different values of  and ,  note that model (3) has multiplicative noise. 

s scheme [4] to illustrate our findings. In Fig. 1 we simulate model (3) when 
such that   = 0.2 &  = 0.8 as in (a) & (c) respectively, and we observe that the 

solution is asymptotic stable as in (a), if we increase the value of the environmental noise 
 0.001 and keeping  = 0.2 we can find a stochastically stable solution (b). Periodic 

solution as in (c) is shown. Thus, by increasing the environmental noise  = 0.001 with 
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the same magnitude of time delay the amplitude of stochastic fluctuation increases significantly 
as in (d). 
 

a b 

c 

 

d 

Figure1: Numerical simulations of the solution of the stochastic model (3) with parameter 
values =1.6, a=0.05, c=0.6, =0.49, K=1, and =0.9. (a)  when  and  =0.2, (b)  
when  and  =0.2 which shows stochastically stable population distribution 
for both species. Periodic solution for  and  =0.8 as in (c), while in (d) when 

 and  =0.8 

CONCLUSION 

In this work, we studied a stochastic predator-prey system with time-delay and hunting 
cooperation on predator. We defined the characteristic equation of the deterministic model. 
Some new and interesting sufficient conditions that ensure the local asymptotic stability for the 
addressed model have been derived. We attained critical value of time delay where Hopf 
bifurcation occurs. Existence and uniqueness of the positive global solution for such SDDEs 
model have been discussed. The theoretical results and numerical simulations of SDDEs model, 
we have seen thatfor small values of white  noise has a significant impact on the dynamical 
behavior of the model. The combination of stochastic effects and time delay increases the 
complexity and enriches the dynamics of the model. 
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ABSTRACT  

In this paper, we are concerned with local existence and blow-up of a unique solution to the 
Cauchy problem for a time-space fractional  evolution system with time-nonlocal source terms 
of polynomial growth. At first, we prove the existence and uniqueness of the local mild solution 
by the Banach contraction mapping principle. Then, we show that such a mild solution is a weak 
solution and we establish a blow-up result by the test function method with a judicious choice 
of the test function. Finally, we establish an estimate of the life span of blowing up solutions 
under some suitable conditions.  

Keywords: Fractional derivatives and integrals; nonlinear evolution equations; local existence; 
blow-up; life span  

 

1. INTRODUCTION  

In this paper, we consider the following Cauchy problem 
 

             (1) 

 
where is the Caputo fractional derivative operator 

of order ,   is the left-sided Riemann-Liouville fractional integral of order , 

defined by 

 

 
where   is the gamma function,  is the fractional Laplacian operator defined by 

 

for  where  is the homogeneous Sobolev 
spacedefined by 

 
, if  

, if  
where  is the Schwartz space,  is the Fourier transform and  its inverse, and 

, where  denotes the space of all continuous functions decaying to zero at 
infinity. 
If  is replaced by the first differential operator  we have the following problem 

studied by Fino and Kirane , 
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First, they studied the case . They validated the system by an existence-uniqueness 
result. And then they gave the blow-up rate of solutions and the necessary conditions for local 
or global existence. Finally, in [4, Remark 2], they claimed that using the same method, one 
can extend this case to .  
This paper is organized as follows: In section 2, we present some definitions and results that 
will be used throughout this study. In section 3, the local existence and uniqueness of mild 
solutions of problem (1)are established. In Section 4, blowing-up solutions are shown to exist, 
while in Section 5, we establish an estimate of the life span of blowing up solutions. 

2. PRELIMINARIES  

In this section, we present some definitions and results that will be used in the following 
sections, which can be found in [2, 5]. Let  be a real constant such that . 
The Caputo derivative of order , for a differentiable function , is defined by 

 

The left-sided Riemann-Liouville fractional derivative of order , for a continuous function , 
is defined by 

 

The right-sided Riemann-Liouville fractional derivative of order , for a continuous function 
, is defined by 

 

Furthermore, for every  such that ,  exist and are continuous, the 
formula of integration by parts can be given by 

 

The relation between Caputo and Riemann-Liouville derivatives is 
 

The Mainardi's function is given by 

 
The Mittag-Leffler operators based on the analytic semigroup  generated by the space  
fractional operator  are defined by 

 

 

3. LOCAL EXISTENCE  

In this section, we give the local existence and uniqueness of mild solution of the problem (1). 
First, we give the definition of mild solution of (1).  
 
Definition3.1. (Mild solution) Let  and We say that 

 is a mild solution of (1) if  satisfies, for 
, the following equations 
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Theorem 3.2.  (Local existence) Let . Then, there exists a maximal time 

 such that the problem (1) has a unique mild solution 
. Furthermore, 

 

If, in addition, , , then  for all . 
 

4. BLOWING UP SOLUTIONS  

Definition 4.1.  (Weak solution). Let  and . We say that  is a 
weak solution of (1) if   and satisfies the 
following equations 

 
for all test functions such that  
 
Lemma 4.2.  Let  and  be a mild 
solution of  (1). Then  is also a weak solution of  (1). 
 
Theorem 4.3.  Let   with , . If 

 

 (1)

 
5. LIFE SPAN OF BLOWING UP SOLUTIONS  

In this section, we give an upper bound estimate of the life span of the blowing up 
solutions with some special initial datum. To this aim, we consider the following problem 

             (2) 

where  is a small parameter,  ,  and  
satisfies 

 

                       (3) 

 
for some positive constants  and , where 
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Theorem 5.1.  Suppose that (3) holds. Let  be the life span of the solution  of 
the problem (2). Then there exists a positive constant   such that 

 
 

REFERENCES  

[1] B. Ahmad, A. Alsaedi, D. Hnaien and M. Kirane, On a semi-linear system of nonlocal time and space reaction 
diffusion equations with exponential nonlinearities, J. Equations Applications, 30(1)(2018), 17 40. 

[2] F. Mainardi, Concerning an equation in the theory of combustion, In: A. Carpinteri and F. Mainardi eds.,   Fractals 
and Fractional Calculus in Continuum Mechanics, Lecture Notes in Computational Science and Engineering,  
Springer-Verlag, New York: Springer 1997, ISBN 978-3-7091-2664-6. 

[3] A. Fino and M. Kirane, Qualitative properties of solutions to a time-space fractional evolution equation, Quart. 
Appl. Math., 70(1)(2012), 133 157. 

[4] A. Fino and M. Kirane, Qualitative properties of solutions to a nonlocal evolution system, Math. Meth. Appl. 
Sci., 34(9)(2011), 1125 1143. 

[5] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: Theory and applications, 
Switzerland: Gordon and Breach Science Publishers; 1993, ISBN-13: 978-2881248641. 

  



165 
 

SOLVING FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS OF 
ORDER  USING FRACTIONAL POWER SERIES METHOD 

REEM EDWAN1,RANIA SAADEH2,*, SHATHA HASAN3, MOHAMMAD ALAROUD4, OMAR ABU 
ARQUB5, MOHAMMEDAL-SMADI3, & NABIL SHAWAGFEH5 

1Department of Mathematics, Taibah University, Madinah Munawwarah, Saudi Arabia 
2Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan 

3Applied Science Department, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan 
4Center for Modelling and Data Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, 

Selangor DE, Malaysia 
5Department of Mathematics, The University of Jordan, Amman 11942, Jordan  

E-mail:    rsaadeh@zu.edu.jo* 
 

ABSTRACT  

The solution of fractional integro-differential equations, in the Volterra sense, is very important 
to describe the behavior of linear and non-linear problems. In this article, we discuss the 
analytical approximate solution for a class of fractional Volterra integro-differential equations 
of order , where . The fractional power series method (FPSM) is applied to provide 
the analytical solutions in the form of rapidly convergent fractional power series (FPS) 
depending on the residual error function and Taylor series generalized formula under the Caputo 
sense. In order to validate the effectiveness, potential, and simplicity of the proposed approach 
in solving such equations, numerical examples are performed. The analysis of the obtained 
results shows that the FPSM is simple, straightforward and appropriate tool for solving various 
forms of these equations. 

 

Keywords: Fractional power series method,fractional Volterra integro-differential equation, 
Caputo fractional derivative. 

1. INTRODUCTION 

In recent times, fractional Integro-differential equations (FIDEs) have played a vital role in the 
mathematical formulation of various problems that arise in fields of engineering and sciences, 
such as fluid dynamics, the theory of elasticity, electrodynamics, oscillating magnetic field, and 
so on [1-4]. The derivatives of fractional order provide an excellent tool in order to describe the 
memory and hereditary properties of different problems. Solving the FIDEs exactly is 
occasionally too complicated task, and hence finding good approximate and numerical 
solutions for this kind of equations using numerical methods will be very valuable. 
Our concern in this work is to provide the analytic approximate solutions using fractional power 
series method (FPSM) for a class of fractional Volterra integro-differential equations(FVIDEs) 
of order  of the form: 
 

, (1) 

 

subject to initial condition 
 

 and  . (2) 

where  is a continuous function of ,  is called a crisp kernel function,  and 

the operator  indicated to the Caputo derivative of fractional order in crisp sense. Here   

is unknown function which needs to be determined. 
Investigations of Volterra and Fredholm FIDEs by using different numerical methods are 

done by many experts. Among of these methods: variational iteration method [3];Adomian 
decomposition method [4];Spectral-collocation method [5];Homotopy perturbation method 
[6];Generalized Taylor matrix method [7].Further research papers regarding numerical 
techniques for integro-differential differential equations, we refer to [8-17]. 

This paper introduces a powerful analytical method, called fractional power series method 
(FPSM) for solving linear farctional Volterra integro-differential equations. This method 
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combining of generalized Taylor formula and the concept of the residual error function under 
the Caputo meaning. The FPSM help us to obtain the approximate solutions in the form of 
convergent FPS without linearization, perturbation, or discretization [18-24]. It was applied 
successfully to solve different types of ordinary, fractional and fuzzy differential equations. The 
structured of this paper is as follow:  In Section 2, some basic mathematical concepts are 
described. The analysis of the proposed method is given in Section 3. Simulations and test 
applications are performed to show the performance of the FPSM in Section 4. In Section 5, 
the conclusion is presented. 

2. BASIC MATHEMATICAL CONCEPTS 

The purpose of this section is to present some basic definitions and facts related to fractional 
calculus and fractional power series, which are used in this study [25-37]. 
 
Definition 2.1. The Caputo fractional derivative of a function  of order  is defined by: 
 

 

 
Definition 2.2.A fractional power series (FPS) representation at is given by 
 

 

where  and , and  are the coefficients of the series. 

Theorem 2.3.Suppose that  has the following FPS representation at  

 (3) 

where If , and 

, for , then coefficients  will be in the form where 

 ( -times). 
 

Lemma 2.4.Suppose that , and 

 Then for any we have  

 
 

where  is the Riemann-Liouville fractional operator of order  
 
Theorem 2.5. Let  has the FPS in (3) with radius of convergence  and suppose that 

 for  Then, 
 

 (4) 

where   and  for some 

. 
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3. ANALYSIS OF PROPOSED ALGORITHM

In this section, we give the approximate solution of FVIDE (1) and (2) by means of the propsed 
method. The fractional power series (FPS) solution of (1) about  has the following 
general form: 

 (5) 

 
Subsequent, consider the th-FPS solution by the following truncation series: 
 

 (6) 

From initial condition (2), we have , which represents the first-FPS 

approximate solution of  FVIDE (1) and (2). So, the expansion (5) will be written as 
 

 (7) 

 
Now, define the following residual function: 
 

 (8) 

Consequently, the th-residual function is given by 
 

 (9) 

 
In order to find , we consider the th-FPS solution for  in (7),substitute 

it into (9), compute  of the obtained equation and then lastly find the solution of  

, . 

4. SIMULATION AND TEST APPLICATIONS 

This section aims to test the validity and reliability of FPSM by applying it on two fractional 
integro-differential equations of Volterra type.  
 
Application4.1 Consider the following fractional integro-differential equation of Volterra type: 

 (10) 

 

with the initial conditions 
 

and . (11) 
 

 

The exact solution at  is  
Following the procedure of RPS-algorithm, the FPS approximated solution of IVPs (10) 

and (11) has the form 

 (12) 

 

Consequently, the th-residual function is 
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(13) 

 
 

Table 1:Numerical results for Example 4.1 at  
 

    

    
    
    
    

 
Table 2: Numerical results for Example 4.1 at different values of  
 

 
10th RPS solutions 

    

     
     
     
     

 
Numerical results for the 10th-approximated are given in Table 1 with step size  at 

. In which the 10th-approximated for different values of , whereas  and 
 are presented in Table 2. From these tables, it can be noted that the RPS method 

provides us with an accurate approximate solution, which is in good agreement with the exact 
solutions for all values of   in . 

CONCLUSION 

In the present article, the analytic-numeric solution of linear fractional integro-differential 
equations of Volterrta type is constructed and analyzed by utilizing an efficient and accurate 
algorithm, named fractional power series algorithm. The FPS algorithm provides good analytic-
numeric approximate solutions close to exact solutions. Two illustrative applications are tested 
to illustrate the accuracy and simplicity of the aforesaid method. Obtained results emphasized 
that the proposed method is a powerful and suitable technique to obtain the analytic-numeric 
approximate solutions for various types of fractional differential equations. 

REFERENCES  

R.P. Kanwal, Linear Integral Differential Equations: Theory and Technique, second edition, Birkhauser Boston, 
Georgia, (1996). 

A.J. Jerri, Introduction to Integral Equations with Applications, second edition, John Wiley and Sons, New York, 
(1999). 

S. Irandoust-pakchin and S. Abdi-Mazraeh, Exact solutions for some of the fractional integro-differential equations 
with the nonlocal boundary conditions by using the modifcation of 
method,International Journal of Advanced Mathematical Sciences 1(3) (2013)139 144. 

[1] R.C. Mittal and R. Nigam, Solution of fractional integrodifferential equations by Adomain decomposition 
method,the International Journal of Applied Mathematics and Mechanics 4(2) (2008) 87 94 2. 

Y. Yang,Y. Chen and Y. Huang, Spectral-collocation method for fractional Fredholm  integro differential equation, 
Journal of the Korean Mathematical Society 51(1)(2014)203 224. 

s homotopy perturbation method for nonlinear ferdholm integro-differential equations 
of fractional order,International Journal of Eng. Research and Applications 2(5)(2012) 52 56. 



169 
 

S. Ahmed and S.A.H. Salh, Generalized Taylor matrix method for solving linear integro-fractional differential 
equations of volterra type, Applied Mathematical Sciences 5(33-36) (2011) 1765 1780. 

M. Al-Smadi, Reliable Numerical Algorithm for Handling Fuzzy Integral Equations of Second Kind in Hilbert 
Spaces, Filomat 33(2) (2019) 583 597. 

I. Komashynska and M. Al-Smadi, Iterative reproducing kernel method for solving second-order integrodifferential 
equations of Fredholm type, Journal of Applied Mathematics 2014 (2014) 11 pages. 

O. Abu Arqub and M. Al-Smadi, Numerical algorithm for solving two-point, second-order periodic boundary value 
problems for mixed integro-differential equations, Applied Mathematics and Computation 243 (2014) 911-922. 

[2] A. Freihat, R. Abu-Gdairi, H. Khalil, E. Abuteen, M. Al-Smadi and R.A. Khan, Fitted Reproducing Kernel 
Method for Solving a Class of Third-Order Periodic Boundary Value Problems, American Journal of Applied 
Sciences 13 (5) (2016) 501-510. 

[3] R. Saadeh, M. Al-Smadi, G. Gumah, H. Khalil and R.A. Khan, Numerical Investigation for Solving Two-Point 
Fuzzy Boundary Value Problems by Reproducing Kernel Approach, Applied Mathematics and Information 
Sciences 10 (6) (2016) 2117-2129. 

[4] O. Abu Arqub and M. Al- actional partial integrodifferential 
equations subject to initial and Dirichlet boundary conditions, Numerical Methods for Partial Differential 
Equations 34(5) (2018) 1577-1597. 

O. Abu Arqub, Z. Odibat and M. Al-Smadi, Numerical solutions of time-fractional partial integrodifferential 
equations of Robin functions types in Hilbert space with error bounds and error estimates, Nonlinear Dynamics 
94(3) (2018) 1819-1834. 

G. Gumah, K. Moaddy, M. Al-Smadi and I. Hashim, Solutions to Uncertain Volterra Integral Equations by Fitted 
Reproducing Kernel Hilbert Space Method, Journal of Function Spaces 2016 (2016) 11 pages. 

O. Abu Arqub, M. Al-Smadi and N Shawagfeh, Solving Fredholm integro-differential equations using reproducing 
kernel Hilbert space method, Applied Mathematics and Computation 219(17) (2013) 8938-8948. 

M. Al-Smadi and O. Abu Arqub, Computational algorithm for solving fredholm time-fractional partial 
integrodifferential equations of dirichlet functions type with error estimates, Applied Mathematics and 
Computation 342 (2019) 280-294. 

M. Al-Smadi, A. Freihat, H. Khalil, S. Momani and R.A. Khan, Numerical multistep approach for solving fractional 
partial differential equations, International Journal of Computational Methods 14 (2017) 15 pages. 
https://doi.org/10.1142/S0219876217500293 

M. Alaroud, M. Al-Smadi, R.R. Ahmad and U.K. Salma Din, Computational optimization of residual power series 
algorithm for certain classes of fuzzy fractional differential equations, International Journal of Differential 
Equations 2018, Art. ID 8686502, (2018) 11pages. 

M. Alaroud, M. Al-Smadi, R.R. Ahmad and U.K. Salma Din, An Analytical Numerical Method for Solving Fuzzy 
Fractional Volterra Integro-Differential Equations, Symmetry 11(2) (2019) 
205.https://doi.org/10.3390/sym11020205 

S. Hasan, A. Al-Zoubi, A. Freihet, M. Al-Smadi and S. Momani, Solution of Fractional SIR Epidemic Model Using 
Residual Power Series Method, Applied Mathematics and Information Sciences 13(2) (2019) 153-161. 

O. Abu Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, Journal of 
Advanced Research in Applied Mathematics 5 (2013) 31-52. 

I. Komashynska, M. Al-Smadi, A. Ateiwi and S. Al-Obaidy, Approximate Analytical Solution by Residual Power 
Series Method for System of Fredholm Integral Equations, Applied Mathematics and Information Sciences 
10(3) (2016) 975-985.  

A. El-Ajou, O. Abu Arqub and M.  Al-
applications,  Applied Mathematics and Computation  256 (2015) 851-859. 

Z. Altawallbeh, M. Al-Smadi, I. Komashynska and A. Ateiwi, Numerical solutions of fractional systems of two-
point BVPs by using the iterative reproducing kernel algorithm, Ukrainian Mathematical Journal 70(5) (2018) 
687-701. 

M. Al-Smadi, O. Abu Arqub, N. Shawagfeh and S. Momani, Numerical investigations for systems of second-order 
periodic boundary value problems using reproducing kernel method, Applied Mathematics and Computation 
291 (2016) 137-148. 

M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error 
estimation, Ain Shams Engineering Journal 9(4) (2018) 2517-2525. 

K. Moaddy, A. Freihat, M. Al-Smadi, E. Abuteen and I. Hashim, Numerical investigation for handling fractional-
order Rabinovich Fabrikant model using the multistep approach, Soft Computing 22(3) (2018) 773-782. 

G.N. Gumah, M.F.M. Naser, M. Al-Smadi and S.K. Al-Omari, Application of reproducing kernel Hilbert space 
method for solving second-order fuzzy Volterra integro-differential equations, Advances in Difference 
Equations 2018 (2018) 475.https://doi.org/10.1186/s13662-018-1937-8 

M. Al-Smadi, A. Freihat, M. Abu Hammad, S. Momani and O. Abu Arqub, Analytical approximations of partial 
differential equations of fractional order with multistep approach, Journal of Computational and Theoretical 
Nanoscience 13(11) (2016) 7793-7801. 

O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrödinger equations 
in one-dimensional space, FundamentaInformaticae 166 (2), (2019) 87-110. 



170 
 

S. Hasan, M. Al-Smadi, A. Freihet and S. Momani, Two computational approaches for solving a fractional obstacle 
system in Hilbert space, Advances in Difference Equations 2019 (2019) 55. https://doi.org/10.1186/s13662-
019-1996-5 

A. Freihet, S. Hasan, M. Al-Smadi, M. Gaith and S. Momani, Construction of fractional power series solutions to 
fractional stiff system using residual functions algorithm, Advances in Difference Equations 2019 (2019) 95. 
https://doi.org/10.1186/s13662-019-2042-3 

O. Abu Arqub and M. Al-Smadi, Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and 
Painlevé equations in Hilbert space, Chaos Solitons and Fractals 117 (2018) 161-167. 

O. Abu Arqub, A. El-Ajou, S. Momani, Constructing and predicting solitary pattern solutions for nonlinear time-
fractional dispersive partial differential equations, Journal of Computational Physics 293 (2015) 385-399. 

A. El-Ajou, O. Abu Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers 
equation: A new iterative algorithm, Journal of Computational Physics 293 (2015) 81-95. 

S. Momani, O. Abu Arqub, A. Freihat and M. Al-Smadi, Analytical approximations for Fokker-Planck equations of 
fractional order in multistep schemes, Applied and computational mathematics 15(3) (2016) 319-330. 

  



171 
 

SOLVING NONLINEAR FUZZY FRACTIONAL IVPS USING FRACTIONAL RESIDUAL 
POWER SERIES ALGORITHM  

 
MOHAMMAD ALAROUD1, RANIA SAADEH2,*, MOHAMMED AL-SMADI3, ROKIAH ROZITA 

AHMAD1, UMMUL KHAIR SALMA DIN1, OMAR ABU ARQUB4 

1 Center for Modelling and Data Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, 
Selangor DE, Malaysia 

2Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan 
3Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan 

4Department of Mathematics, The University of Jordan, Amman 11942, Jordan 
E-mail:    rsaadeh@zu.edu.jo* 

 

ABSTRACT  

Fuzzy initial value problems of fractional order play a vital role in modeling several realism 
matters arising in the natural sciences and engineering fields. In this paper, the fuzzy 
approximated solution of linear fuzzy fractional IVPs under the assumption of strongly 
generalized differentiability have been provided using fractional residual power series (FRPS) 
method. The solution methodology of the proposed algorithm depends on producing the 
solutions in -cut representations with rapidly convergence fractional power series (FPS). 
Numerical problem is performed to demonstrate the accuracy, performance, and reliability of 
the present method. The effects of the fractional order  and the parameter  have been shown 
graphically and quantitatively. The results obtained indicate to an agreement well between the 
fuzzy exact and fuzzy approximated solutions, as well as satisfy the symmetry convex triangular 
fuzzy number. Therefore, the FRPS method is an accurate, effective, simple and suitable tool to 
apply in finding the solutions of such problems. 

Keywords: Fuzzy number, fractional residual power series method, fuzzy fractional initial value 
problems, strongly generalized differentiability 

 

1. INTRODUCTION 

Fuzzy differential equations (FDEs), being a significant area of study the behavior of 
dynamical systems, has captured the interest of several scientists during past decades. It has 
wide applications in various and engineering and physical processes [1-8].  The starting point 
of the fuzzy derivative was introduced by Chang et al. [9], and then Dubois et al. [10] have used 
the extension principle in their approach. Later on, Puri and Ralescu [11] developed the 
derivative for fuzzy-valued mappings by generalized and extended the concept of Hukuhara 
differentiability for set-valued functions to the class of fuzzy functions. Subsequently, Kaleva 
[12] and Seikkala [13] started using the Hukuhara derivative to develop the theory of fuzzy 
differential equations. 

This article purposes to employed an numerical-analytical recent approach, called fractional 
residual power seies (FRPS) algorithm for solving the following fuzzy fractional IVPs 

 

 (1) 

 

where  is the fuzzy Caputo fractional derivative of order ,  is a 
continuous nonlinear fuzzy-valued function,  and  is unknown analytical function 
to be determined. 

The fractional residual power series (FRPS) method is a numeric-analytic method for 
solving different types of ordinary, partial, and fuzzy differential equations of arbitray order. 
The starting point of this method had been presented by Abu Arqub in [14]. The methodology 
of the FRPS approachgives a Maclaurin expansion of the solution based on the Caputo sense 
[15-24]. Throughout this article  denote the set of fuzzy numbers on . 
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2. PRELIMINARIES AND NOTATIONS

Definition 2.1.  Suppose that  is a fuzzy subset of . Then,  is called a fuzzy number such 
that  is upper semicontinuous membership function of bounded support, normal, and convex. 

Definition 2.3 The complete metric structure on  is given by the Hausdorff distance mapping 
 such that 

 for arbitrary fuzzy numbers   and  . 

Definition 2.4.For fixed  and , the function  is called a strongly 
generalized differentiable at , if there is an element  such that either: 

1) The H-differences  exist, for each  

sufficiently tends to 0 and   

2) The H-differences  exist, for each  

sufficiently tends to 0 and , 

where the limit here is taken in the complete metric space . 

Definition 2.5. Let  and . One can say  is Caputo 

fuzzy -differentiable at  when   exists, where  . 

As well, we say that  is Caputo differentiable if  is (1)-differentiable and  is Caputo 
differentiable if    is (2)-differentiable. 

 
Definition 2.6. A fractional power series (FPS) representation at  has the following form 

, 
where  and , and  
 
Theorem 2.7.Suppose that  has the following FPS representation at  

. 

where  and  for , then the coefficients 

 will be in the form such that  ( -times). 

 

3. FUZZY FRACTIONAL INITIAL VALUE PROBLEMS 

The -solution of FFIVPs (1) is a function  that has Caputo [ ]-
differentiable and satisfies the FFIVPs (1). To compute it, the next algorithm show us the 
strategy to solve the FFIVPs (1) in parametric form in term of its -levels representation. 
Indeed, there are two cases depends on differentiability type [25-32]. 

Algorithm 3.1: To determine the -solutions of FFIVPs (1), there are two cases: 

Case (I): If  is Caputo [(1)- ]-differentiable,the FFIVPs (1) will be converted to the 
followingcrispsystem; Then, do the following steps: 
 

,   (3) 

Step1: Solve the system for  and  
Step2: Ensure  and are valid level sets for . 
Step3: Construct the (1)-solution,   whose -level representation . 
 



173 
 

Case (II): If is Caputo [(2)- ]-differentiable,the FFIVPs (1) will be converted tothe 
following crisp system; Then, do the following steps: 
 

, (4) 

Step1: Solve the system for  and  
Step2: Ensure  and are valid level sets for . 
Step3: Construct the (2)-solution,   whose -level representation . 

 

4. DESCRIPTION OF FRPS METHOD 

In this section, we show the basic idea of the FRPS method in finding the -solution for the 
system of OFDEs (3). In the  same manner,we can apply the propsed method to construct (2)-
solution of (4). To reach our purpose, we suppose that the solutions of (3)about are given 
by 

, 
. 

(5) 

Using the conditions (3), the approximate values of (5) can be found using th-truncated 
series: 

, 
. 

(6) 

In order to determine the unknown coefficients and  for , we define the 
following th-residual functions: 

, 
. 

 (7) 

From (6), we notice that , for each  and  , 

which leads . Furthermore, 

, for each . 

 

5. Numerical Experiment 

In this section, we consider a linear fuzzy fractional initial value problem to illustrate the 
efficiency and applicability of the FRPS algorithm. Here, all the symbolic and numerical 
computations performed by using Mathematica 10. 
 

Example 5.1 Consider the following linear fuzzy fractional initial value problem: 

. (8) 

 

Based on the type of differentiability, then the FFIVPs (8) can be converted to the following 
systems: 
Case1: Under Caputo [(1)- ]-differentiability, the system of OFDEs is given by 
 

, (9) 
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In view of the last discussion for the FRPS algorithm, starting with  , and 

 and depend on the result ,
, the 6th-FRPS approximated solutions for (9) are given by 

, 

. 
 

Hence, the approximated solutions for OFDEs (9) can be written as  
 

 

which are coincide well with  the Taylor series expansion of  the exact solution 
 when . 

 
Case2: Under Caputo [(2)- ]-differentiability, the system of OFDEs is given by 
 

, (10) 

 

By FRPS-algorithm, the 6th-FRPS approximated solutions for OFDEs (10) are given by  

, 

. 

Thus, the approximated solutions for OFDEs (10) can be expressed as 
 

 

which are coincide well with  the Taylor series expansion of  the exact solution 
 when . 

To show the accurecy and efficiency of the method. The absolute errors of   and 
 have been obtainedin Table 1 at  for different values of , FFIVPs (9), case 1. 

Table 1: Absolute errors of  and  at  and , for Example 5.1, case 1. 
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As well, we have been given in Table 2, the numerical results of th 8th-FRPS approximated 
solutions, for case 2 at different values of  and   with some selected grid points on . 

Table 2: Approximated solutions of  and ,  at , for Example 5.1, case 2. 

CONCLUSION 

In this paper, the fractional residual power series algorithm has been applied to investigate the 
solution of linear FFIVPs under the assumption strongly generalized differentiability. The 
present algorithm gives accurate and efficient analytical solutions without require being 
linearized, discretized or perturbation. From obtained results, the fuzzy approximated solutions 
are coinciding well with each other, and with the fuzzy exact solution as well indicate that the 
proposed approach is a direct, simple,  and very convenient algorithm to solve such problems 
and suitable to deal with a wide variety of other fuzzy differential equations of fractional order. 
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ABSTRACT  

Optimum stratification is the method of choosing the best boundaries to make strata 
homogeneous .It  is used to attain more precision  and accuracy than other methods of sampling 
. The main idea behind this method is that a heterogeneous population is partitioned   into 
subpopulations, each of which is internally homogeneous. The main obstacle  associated with 
stratified sampling is how to gain the optimum boundaries with minimum variance .It is well 
known that several numerical and computational methods have been changed for this goal  , 
some of them are designed  to highly skewed  populations and others to any kind of populations 
This paper considers  an Artificial Bee Colony (ABC) algorithm to arrive at the optimum  of 
stratum boundaries depending on Neyman Allocation  The ABC algorithm is  used on two 
groups of populations and a comparative study with Particle Swarm Optimization (PSO) is 
given . The paper concludes that  numerical results show that the proposed algorithm is able to 
find the optimum stratum boundaries for a set of standard populations and various standard test 
functions   compared   with (PSO) algorithms. 

Keywords:Stratified random sampling;  Neyman  Allocation;  Artificial Bee Colony ; Particle 
Swarm Optimization Optimum  Stratum  Boundaries 

 

1. INTRODUCTION 

        Stratified random sampling   or proportional random sampling  is a commonly used 
sampling method  especially for heterogeneous populations. Stratified sampling is preferably 
chosen for its capability of improving statistical accuracy resulting in a smaller variance of the 
estimator, in comparison with simple random sampling. In order to decrease the variance of the 
estimator in stratified sampling  [2 ]. 

Several numerical and computational methods have been invented to achieve the optimal limits 
in class sampling. Some apply to highly deviant populations while others apply to any type of 
population. A very early and simple method is the cumulative square root of the cumff method 
of Dalenius & Hodges in 1959 [6]. We also propose the Lavallée and Hidiroglou [13] algorithm 
for highly skewed groups, while Kozak (2004) [12] and the Kennedy & Eberhart method in 
2001 (pso) [9] were preferred to non-perverted populations. 

 

       This study proposes the ABC algorithm for defining stratum boundaries. In order to find 
out the efficiency of ABC algorithm,it is compared with Particle Swarm Optimization (PSO) 

 

2. STRATIFIED RANDOM SAMPLING 

       The equal allocation method is  considered the simplest one where each stratum sample  has 
the same size. With the Neyman allocation method, the sample size in each stratum  follows  
Neyman  allocation.[14] 

       we have each character expresses the value as follows: Y:stratification variable; 
N:population size; n: sample size; L: number of strata; Nh: number of elements in stratum h(h 
= 1, . . . , L);nh: sample size in stratum h;   : mean of elements in stratum h;    estimated mean 
in stratified sampling  :variance of the estimated mean in stratified sampling .[1] 

          In stratified sampling [5], a population with N units is separated  into L groups with 
N1,N2, ...,Ni, ...,NL units respectively. These groups are called strata. like that 
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We also have a variance in the mean of the stratified sample is: 

 

The equation for Neyman allocation is written as follows  .  

 

 

3. WHAT IS THE ARTIFICIAL BEE COLONY ALGORITHM 

          The artificial bee colony algorithm was proposed by Karaboga  in "2005" to develop the 
digital function .It simulates the colony of bees depending on the intelligence of a swarm. The 
following are some of the main steps of the artificial bee colony algorithm[7] 

 

         The colony has  three kinds of bees: employed bees, onlooker bees and scout 
bees.   Employed bees cover half the colony , and the other half is onlooker bees. The employed 
bees search for  the food source and send the information of the food source to the onlooker 
bees. The onlooker bees choose a food source to exploit   the information shared by the 
employed bees. The scout bee, which is one of the employed bees whose food source are 
abandoned, finds a new food source randomly. We can employ and adopt food source as a 
solution for development. Denote the food source number as SN, the position of the ith food 
source as xi(i SN), which is a D dimensional vector [8,11]. 

      In ABC algorithm, the ith fitness value i fit for a minimization problem is defined as[10]: 

         

 

         Where( fi ) is the cost value of the ith  solution. The probability that food source being 
selected by an onlooker bee is given by: 

         

 

A candidate solution from the old one can be generated as: 

          

 Where    and   are randomly selected indices,  [-1, 1] is a 
uniformly distributed random number. The candidate solution is compared with the old one, and 
the better one should be remained [8].*If the abandoned food source is xi, the scout bee exploits 
a new food source according to: 

                     

 Where   and  are the upper and lower bounds of the jth 
search space [11]. 

4. SEARCH MECHANISM 

          The exploration and exploitation abilities are essential  for the population based 
algorithms  So it is very important to balance these two abilities to gain  good optimization 
performance . 
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The modified search equation in onlooker bee stage is described as follows[9]:

  +           

    Where k  {1,2,..., SN} is a random selected index which differs from 
 is a random selected index, y j is the jth element of the global best solution,[ 

 , are both uniformly distributed random numbers. 

       -to-ran
algorithm, a new search equation in employed bee stage is proposed as follows: 

         

 Where  

&  

 

          More easily and clearly, the new research equation and research mechanism is proposed 
to balance exploration capacity and utilization capacity in the ABC algorithm. 

 

5. NUMERICAL EXPERIMENTS 

           The ABC experiments for the stratification sampling has been  on populations data and 
functions, to find optimal strata boundaries based on variance of Neyman allocation. All 
experiments are implemented using Matlab (R2018b). 

5.1 tasting artificial bee colony algorithm to  find stratified boundaries.  

         We test the ABC algorithm and compare it with previous results for the POS algorithm[3 
]. Some groups are used for class, central, standard deviation and size. Each population is 
divided into 3, 4, 5 and 6 strata . The function uses probability density and is divided into 2, 3, 
4, 5 strata. 

These populations and  function  are: 

Pop1: The population in thousands of US cities in 1940 (US cities).  

Pop2:Central of banks in Iraq(2010)(CBI) 

F(x) =2(1-x)            Range     x  

 

                                     Table 1   Comparison results  for  pop1 and pop 2 

 

 

 

 

ABC PSO H 

Pop1 :  US cities 

   

0.891951 0.891952 3 

0.472274 0.472761 4 

0.264202 0.264204 5 

0.194225 0.196972 6 

Pop2: CBI 

7.8349e+06 7.7133e+08  3 

3.7039e+06 3.7770e+08 4 

2.5576e+06 2.5664e+08 5 

1.9558e+06 1.9635e+08 6 



180 
 

Table 2 The Comparison results  for the  probability density functions using four 
different strata 

 

CONCLUSIONS 

The numerical results emphasize  the efficiency and capabilities of ABC algorithm in finding the 
Optimal Strata Boundaries. Amazingly, its performance seems better than PSO method  This 
confirms that ABC can be efficiently utilized in the stratification of heterogeneous populations. 
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ABSTRACT 

In this paper, fitting structural regression model when both variables are subject to error is considered 
using a new estimation procedure. The new estimation procedure is a repetitive procedure extension to 
the Wald estimation method. A Monte Carlo experiments are conducted to study the performance of the 
new estimators and the results are compared with the classical two-group and three- group estimators in 
terms of the mean squared error. Moreover, a real data analysis to study the relationship between the 
human development indexand the national gross domestic productis discussed. 

 
Keywords: Error-in-Variables Model; Wald Estimators;Human Development Index  

1. INTRODUCTION  

Structural Measurement Error Model (MEM)[14,17] is an extension of the simple linear 
regression by assuming dependent and independent variables are measured by error. The 
corresponding standard linear MEM [13] assumes that two mathematical variables  and  are 
related as  

1  
where the variables  and  are unobservable and can only be observed with additive errors 
as 

 and   
assuming that the  and the errors terms, and , are uncorrelated. For a random sample of 

sizen, say , ; the structural MEM [12] can be formulated as  

i i ,  
where          (1) 

 , and    

The main problem in Eq.(1)is to estimate the unknown parameters .Several authors have 
discussed a couple of estimation methods to fit the structural MEM.Moreover, there are two 
types of estimation methods: parametric and non-parametric.For the parametric estimation 
method, the method of choice will be the maximum likelihood estimation method proposed by 
Lindley[18]which solves the problem by adding prior assumptions. Madansky [20] wrote a 
detailed summary on the problem of fitting a straight line using MLE when both variables are 
subject to error. Thompson and Carter [23] introduced an overview of the normal theory 
structural measurement error models.Cao et al. [9]have proposed of using an empirical Bayes 
approach by considering the EM algorithms to calculate maximum likelihood estimates for the 
MEM with or without equation error. Cao et al.[8]have obtained iterative formulas of maximum 
likelihood estimations via EM algorithm for the Heteroscedastic MEM.For the non-
parametrictype of estimation method, Wald type estimation methods of the socalled grouping 
methodswere proposed by Wald [24]and modified by Nair and Shrivastava[21]. Recently, the 
information theory was used byAl-Nasser[2, 3]. Other authors like Al-Nasser [5] and Carroll 
[11] have proposed a non-parametric estimatorof a regression function from data that are 
impure by a mixture of the two errors (classical and Berkson).Moreover, robust non-parametric 
estimation procedures were proposed by Al-Nasser [4,6]and Wiedermann et al.[25]. More 



183 
 

details about different estimation methods on the MEM context can be found in [1, 7, 10, 15, 
16, 19, 22]. 

In this paper, a new non parametric estimation procedure is proposed and discussed 
numerically.This paper is divided into six sections. The second section is designated to review 
the classical Wald-type estimation methods. The third section introduces the new idea of an 
estimation procedure. The Fourth section presents Monte Carlo experiment to study the 
performances of the proposed estimators in fitting the MEM. The fifth section includes a real 
data analysis to study the relationships between Human development index (HDI)and the 
national gross domestic product (GDP); and the paper ends withthe sixth which presents 
concluding remarks.  
 
2. THE CLASSICAL WALD TYPE ESTIMATION METHODS 

The idea of the Wald type estimation methods as given by Gillard [15] and Wald[24] 
suggests of splitting the observations into two groups namely; "G1 and G2" of the same size 
(say m). Such that G1 contains the first half of the ordered observations (X (1), Y (1)

(X (m), Y (m))) and G2 contains the second half (X (m+1), Y (m+1)  (n), Y (n))). Then finds 
the slope between the central tendency of these groups. To be more clear, the steps of Two-
Group estimation method are: 

 
 Order the data bas largest. 
 Divide the sample into two equal groups. 
 Note: If we have an odd sample size, then remove median.  
  
 Compute the average of each sub-group.  
 The point estimators aregiven in Eq.(2) and Eq.(3): 

 

 = (2) 

 
 =  - (3) 

Where  = sample mean for y values in G2;  = sample mean for y values in G1. = 
sample mean for x values in G2.; = sample mean for x values in G1.An extension of the 
two group procedure was proposed by Bartlett [7] and Nair and Shrivastava [21], by 
suggesting of splitting the observations into three equally sub-groups, "G1, G2 and G3"; and 
discard the middle group from the analysis.  
 
3. THE PROPOSED ESTIMATION METHOD 

The proposed estimation method is an extension of the classical Wald type procedure. It is 
a repetitive procedure depend on sorting the observed pairs  

extent of  

find all possible paired slopes. The procedure can be described as follows:  
 gest and take the associated  
 Divide the data into r-subgroups each of size k; where . 

 Compute the central tendency measure for each subgroup,  
 Define the jth slope as follows:  

 

 ,   n,  

 
 The final estimators estimator will be as given in Eq.(4) 
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     and         (4) 

 
4. MONTE CARLO EXPERIMENT 
 
To study the performance of the proposed methods, two random samples were studied inlier 
and outlier samples based on a 10000 random samples each of size n that generated from the 
standard normalMEMas given in Eq.(1); under the following assumptions: 
 
(1) The parameter initial values are (  = 0, =1, =1and =1) 
(2) Three different sample sizes are considered; n = 10, 50 and 100. 
(3) For the Proposed procedure, the sample suggested to be divided into r = 3, 4 samples. 
(4) For the outlier case, the data was contaminated; at each step a certain percentage (10%) of 

the observations were deleted and 
data point was generated according to the given relationship where: 
 

(i) In y only outliers ( , . 

(ii) In x only outliers ( ,  

(iii) In both x and y outliers ( , ) =  (16, 16). 
 
The performances of these estimators were measured by using the simulated bias and mean 
square error: 

;  

Where is the estimates given by one of the proposed estimators for the ith sample.The Monte 

Carlo experiment results are given in Table.1 for inliers cases; however, Table 2 Table 3 and 
Table 4 for outlier in x only, outlier in y only, outliers in both x and y, respectively. The 
simulated results indicated that, the classical Wald type estimation procedure is better than the 
proposed procedure when the sample size is small ( n = 10). Then as increasing the sample size 
the proposed procedure robustify the classical Wald type procedure in terms of the Bias and the 
MSE for both parameters. 

 
Table 1: Bias and MSE for  and : Inlier case. 

n Parameter Statistic 
Estimation Methods 

Two group Three group 
Repetitive 

 r = 3 
Repetitive  

r = 4 

10 
 

Bias 0.0051 -0.0055 0.4253 -0.0146 
MSE 0.01821 0.02888 0.05473 0.02865 

 
Bias -0.4969 -0.5005 -0.4783 -0.4852 
MSE 0.04167 0.04085 0.04278 0.06391 

50 
 

Bias 0.0026 0.0067 0.4847 0.0027 
MSE 0.00061 0.00098 0.00575 0.00065 

 
Bias -0.499 -0.4979 -0.4937 -0.5002 
MSE 0.0055 0.00538 0.00531 0.00545 

100 
 

Bias 0.0015 -0.0006 0.4951 0.0003 
MSE 0.00015 0.00024 0.00271 0.00015 

 
Bias -0.4996 -0.4997 -0.4978 -0.4997 
MSE 0.00262 0.002599 0.002577 0.002597 

 
Table 2: Bias and MSE for  and : outlier in x. 

 

 n Estimate Statistic 
Estimation Methods 

Two group Three group 
Repetitive 

 r = 3 
Repetitive 

 r = 4 

 10  
Bias -0.0086 -0.002 0.6636 0.0014 
MSE 0.02864 0.05082 0.11561 0.14237 
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Bias -0.7539 -0.7753 -0.7099 -0.6876
MSE 0.06365 0.0666 0.06218 0.07263 

50 
 

Bias -0.0003 -0.0023 0.5743 0.0046 
MSE 0.00089 0.00158 0.00792 0.00098 

 
Bias -0.5878 -0.5971 -0.5826 -0.5762 
MSE 0.00733 0.00749 0.00717 0.00704 

100 
 

Bias 0.0005 0.0013 0.545  -0.0014 
MSE 0.0002 0.00033 0.00327 0.0002 

 
Bias -0.5506 -0.5526 -0.5503 -0.5464 
MSE 0.003144 0.003149 0.003122 0.003082 

 
Table 3: Bias and MSE for  and : outlier in y. 

 

 n Estimate Statistic 
Estimation Methods 

Two group Three group 
Repetitive  

r = 3 
Repetitive  

r = 4 

 

10 
 

Bias -0.0022 0.0104 0.4447 -0.0035 
MSE 0.33157 0.56598 0.97914 0.64681 

 
Bias -0.5219 -0.5041 -0.5027 -0.5146 
MSE 0.3338 0.33399 0.42493 0.89781 

50 
 

Bias 0.005 0.0045 0.4968 0.0042 
MSE 0.00273 0.00443 0.0119 0.00286 

 
Bias -0.5065 -0.5041 -0.5016 -0.5037 
MSE 0.00731 0.00701 0.00719 0.00707 

100 
 

Bias 0.0014 0.0008 0.4898 -0.0026 
MSE 0.00041 0.00061 0.00333 0.00042 

 
Bias -0.5008 -0.4995 -0.4979 -0.4961 
MSE 0.002831 0.002764 0.002768 0.002731 

 

Table 4: Bias and MSE for  and : outlier in both (x, y). 

( ,  n Estimate Statistic 
Estimation Methods 

Two group Three group 
Repetitive 

r = 3 
Repetitive 

r = 4 

(  

10 
 

Bias -0.0159 -0.0106 0.6588 -0.0131 
MSE 0.12335 0.25809 0.36305 0.41058 

 
Bias -0.7459 -0.7684 -0.715 -0.6691 
MSE 0.1585 0.19088 0.17847 0.26748 

50 
 

Bias 0.0055 0.0037 0.5793 -0.0009 
MSE 0.00239 0.00485 0.01102 0.00264 

 
Bias -0.5885 -0.5959 -0.59  -0.5748 
MSE 0.00856 0.00893 0.00861 0.00819 

100 
 

Bias 0.001 0.0045 0.5447 0.0034 
MSE 0.00041 0.00077 0.00366 0.00041 

 
Bias -0.5509 -0.5526 -0.5472 -0.5476 
MSE 0.003312 0.003345 0.003266 0.003257 

 

5. REAL DATA ANALYSIS  

The real data analysis in this article seeks to determine the impact of GDP on HDI in 
Jordanwithin the period (1990-2017). The trend of both variables within the study period are 
given in Figure.1 and Figure 2. 

 

Figure.1 The trend of the Jordanian HDI within 1990-2017 
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Figure.2 The trend of the National GDP within 1990-2017 

Moreover, Table 5. representsthe descriptive statistics of both variables in general. It is worth 
to say that there is a strong positive significant correlation (r = 0.761, p < 0.001) between GDP 
and HDI in Jordan.  

Table 5: Descriptive Statistics 

Variable Min Max Mean STDEV Correlation P.   
GDP 1158 4130 2476.82 1120.867 

0.761 < 0.001 
HDI .617 .736 .70514 .034164 

 
Moreover, the scatter plot (Figure 3) suggest the type of the relationships to be (almost linear). 

 
Figure.3 The scatter plot of HDI and GDP 

Therefore, GDP and HDI can be modeled as a linear relationship, however, we believe that 
both variables are measured subject to error since the final value for each of these variables 
depends on several sub-factor. Hence, the MEM is the best model to be used to study the 
relationship between HDI and GDP which can be rewritten as 

- ) + . 
Accordingly, Table 6, shows the results of all estimation methods considered in this article. 
The results indicated the proposed method with r =3 and the three-group methods gave more 
accurate estimators than the other estimation methods as can be seen in Figure 4. 
 

Table 6: Parameter Estimation of HDI vs GDP 
 

Method criterion   

Classical 
Two-Group 3.76E+4 -2.40E+4 
Three-Group 2.92E+4 -1.81E+4 

Proposed 
r = 3 6.11E+4 -4.06E+4 

r = 4 7.13E+4 
-4.78E+4 

 

 

 

Figure 4 Residual Comparisons of the estimation methods  
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CONCLUDING REMARKS 
 

This study proposed a new non-parametric estimation procedure to fit the structural MEM. 
The new procedure used repetitive Wald type estimation method. The Monte Carlo simulations 
provide a good evidence for the superiority of the proposed estimation procedure on the 
classical methods in cases of the data moderate or large sample size. Moreover, the estimation 
procedure applied on a real data to study the effect of the GDP on the HDI. The data analysis 
suggested that there is a strong positive relationship between both variables. Future work will 
be about finding the optimal r value in the proposed procedure. 
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ABSTRACT  

The objective of the paper is to introduce certain fractional integral formulas of (p-k)-Mittag-
Leffer Function by using the generalized fractional integral operators (the Marchichev-Saigo-
Maeda operators). Further integral formulas are also obtained involving Saigo and Riemann-
Lioville integral operators as their special cases. 

Keywords: (p-k) Pochhemmer symbol; Fractional Kinetic Equation; (p-k)-Mittag-Leffer 
Function; Laplace Transform. 

 

1. INTRODUCTION AND PRELIMINARIES 

Definition 1.  Let , then (p-k) Pochhammer 

symbol is defined as: 
 

(1.1) 

Gehlot in [1] introduced the two parameter gamma function defined as: 
 
Definition 2.Let , then (p-k) Gamma 

function is defined as: 
 

  (1.2) 

 
 

Recently in [2], Gehlot introduced the (p-k) Mittag-Leffler function defined as: 
 

Definition 3.Let  and 

, then (p-k) Mitag-Leffler function is defined as: 

 

(1.3) 

where  is two parameter Pochhammer symbol defined in equation 

(1.1).Following lemmas are required for our present study as follows: 
Lemma 1.For the (p-k) Pochhammer symbol and the -Pochhammer symbol and the 
classical Pchhammer symbol it has 
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 (1.4) 

 
Lemma 2.For the (p-k) Gamma function, the -Gamma function and the classical 
Gamma function it has [1] 

 

 (1.5) 

2. THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS 

 

3F

 
Definition 4.Let  and , then for , then 

 

(2.1) 

  
 
and 
 

(2.2) 

  
 
provided the integrals in equation (2.1) and (2.3) exist.  
In equation (2.1) and (2.3),  

variables defined as: 
 

(2.3) 

   
The above fractional integral operators in equation (2.1) and (2.3) can be written as 
follows: 

 

 (2.4) 

   
and 
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 (2.5) 

   
The following formulas are required for our present study as given in the following 
lemma [8, 9, 13]. 

 
Lemma 3. Let  and  be such that , then 

 

(2.6) 

   
and 

 

(2.7) 
   

The Hadamard product (or the convolution) of two analytic functions is very useful in 
the present work. Let 

 (2.8) 

 and  

 (2.9) 

be two power series. Then, their Hadamard product is the power series defined by 
 

 (2.10) 

where 

 (2.11) 

 
thus, we have R R R  [4, 7] (see also [15, 14] and the references cited therein).  

 
Fox-Wright function  with  numerator and  denominator 

parameters defined for  and  by (see [3, 6, 12, 16]) 
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(2.12) 

 
where the coefficients ,  are such that 

 

 (2.13) 

 

3. FRACTIONAL INTEGRATION OF (P-K)- MITTAG-LEFFLER FUNCTION 

In this section, we present certain fractional integral formulas involving (p-k)-Mittag-
Leffler function  by using the generalized fractional integral operators (the 

Marchichev-Saigo-Maeda operators). 
 

Theorem 1. Let  and 

 and  be 

such that  and  then the 

following fractional integral formula holds true: 
 

(3.1) 

 
Proof. Denote the left hand side of equation (3.1) by .Then using the definition (1.3) 
and interchanging the order of integration and summation, we have 

 

 (3.2) 

 
applying the result (2.11), equation (3.2) reduces to 

 

(3.3) 

 
after little simplification, the above equation (3.3) reduces to 
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(3.4) 

 
Using equation (2.19), in view of (1.3) and (2.21), equation (3.4) gives the required 
result (3.1).  

 
 

Theorem 2  Let  and 

and  be such that  and 

 then the following 

fractional integral formula holds true: 
 

(3.5) 

 
 

Proof. Proof of Theorem  is similar to that of Theorem . 

3.1  Special Cases 

Here we present some special cases by choosing suitable values of the parameters , 
, ,  and . If we put  in Theorems  and , 

we get certain interesting results concerning the Saigo fractional integral operators 
given by the following corollaries. 
Corollary 1 Let  and 

and  be such that  and 

 then the following fractional integral formula holds 

true: 

(3.6) 
 
Corollary 2 Let  and 

 and  be such that  and 

 then the following fractional integral formula 

holds true: 
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(3.7) 

CONCLUSION 

All the finding in this paper are general in nature. Various results as special cases can 
be easily obtained by employing the particular values to the parameters involving in 
our findings.  
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ABSTRACT  

In this paper, a mathemati ical model, consists from a prey-predator system with stage estructuree 
in the preseence of harvesting and toxici ity has been proposed and studied by usi ing the 
classiccLotka-Volterraa type of functional l response. The existe ence, uniqueness and bound eedness 
of the solution of the proposeed model are discussed. The exist eence and the stabili ity analyses of 
all possible equi ilibrium points are stud iied. The global stabil iity of these equili ibrium points are 
performed with sui itableLyapunov functions. Finally, numeri ical simulations are carried out not 
only to confi irm the theoreti icalreesults obtained, but alsoto show the effe ects of variation of each 
parameeter on the proposeed model. 

Keywords: Prey-predator, functional response, stability analysis, Lyapunove function.1   

1. INTRODUCTION 

The prey-predaator system is one of the most importa ant topics in the ecosystem. It is used to solved 
many complex problems or which cannot be predicted with on the ground and thus is considered an 
alternaative method in improviing our knowleedge of the physical and biologi icalprocesseesrelateed to 
the environment.One of the most serious problems that threaten the ecosystem is over-harvesting of 
living things, because of the massive population increase and the desire of people to get more 
resources, that led to the danger to the ecosystem and has become a problem that worries alot. 
Several models were proposed according to harvest models [3,6,7,18,23]. While many researchers 
have tried to limit this problem by suggesting a model containing a refuge to save prey from 
extinction due to over-harvesting, and predation for example [1,13,24]. On the other hand, the age 
factor has a significant impact on the rate of  growth and reproduction, in recent years, many prey-
predator models based on age-structureare studied byauthors [4,8,15]. The other major problem 
affecting the ecosystem is pollution caused by toxic substances, many studies have considered on 
the environmental effects of toxic substances,  Hallam and Clark [22] they studied the effects of 
toxic substances on exposed populations. In addition, Hallam and De Luna [21] have discussed the 
effects of a toxin through the food chain of the population. While Friedman and Shukla [10] 
developed the Models of predaator-prey systems in a polluted closed environment with singlespecies. 
Chaattopadhyay [12] studied the effects of toxic substancees on two competing species and noted that 
the toxic substances have some stabiliizing effect on keep the system.Mortoja et al. [17] considered 
two types of factors such as anti-predator behavior and group defense of stage-structure model. 
There is no doubt that the presence of toxicity will affect the harvest, some studies that focused on 
the existence of harvest and toxic substance [5,9,11,14,16,19,20]. Finally,Majeed [2] suggests 
model contains stage structurees in both populations with the effect of toxicant. In this paper, the 
stage-structured of prey-predaator model with harvesting and toxicity has been proposed and studied. 
The considered model consists of four nonlinear ordinary differential equations to describethe 
interactions by using Lotka-Volterraa type of functionall response.This system is analyzed by using 
the linear stabiliity analyses to find the conditionsfor which the feasible equilibrium points are stable. 
Global stability conditions for proposed model are described by using appropriate Lyapunove 
functions. 
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2. MODEL FORMULATION

In this section, the model' consists of' two speciees prey and 'predaator, each species divided' into two 
classes: one is immaature and' other is maature, which' are denoted' to their' population's sizes at time 
Tby , , and  respectively. Now, in orderr to formulate' the dynamics of' such 
system, the following assumptiions are considered':  
The immature of  prey and' predator grown up to ' be maature with' grown up rates  
and' respectively. The immature prey depends compleetely' in its feediing on maature prey that' 
growth logiistically' with an intrinsic growth' rate  and carrying capaciity  in abseence 
of'maaturepredaator. Also the immaature predator depends completeely' in its feeding' on maature predator 
that'consumees the immaature and'maature prey with the classical 'Lotka-Volterra functional' response 
with consumption rates  and' , respectively, therefore the predaator'speciies growth' due to attack' 
by maature predator' on immaature and' mature prey with conversion ' rates and 

. However, in abseence of' prey species the predator'speciesdecay exponentiially' with the 
mortaliity'rates and of immaature'and mature preda ator respectively. Moreover, the 
immaaturepredaator' can't attack any of' the preys, rather than that it ' depends compleetely' on his parents, 
so that it feeds' on the portiion of up taken food' by maaturepreedator from the first and'second preys 
with' portion rates  and   respectively. Finally, =1,2,3,4 arethe 
catchabiility'coefficiients and' the toxicity coefficiients of' prey species and'predaator species 
respectively. According' above assumptions, the model ' is formulated' as follows: 
 

 

  

 

 

In order' to simpliify the system', the number of parame eters is reduced by' using the 
following'dimensionlessvariables' and parameeters: 

 

 
 

Then dimensional system (1) becomes:  
 

 

 

 

 

 

 
Obviiously' the interaction' functions' of the system  are'contiinuous and' have'contiinuous 
partial'derivaatives' on the following positive four' dimensional '  space: 
 

=,{  
 

Therefore,' these functions' are Lipschiitzian' on   , and hence' the existeence and'uniqueneess of the 
solution' for systeem . Further, all' the solutions of' system  with non-negative initial'condiitions 
are uniformly' bounded' as shown in' the following'theore em. 
Theorem 1:All the solutiions of' system (2)are uniformly bound eed'. 
 
Proof. let  be any solution of' the system (2) with'  
Now'consiider a function: , and' then' take the time deriivative' 
of'function':  alonge the solution of' the system (2), So, due to the fact' that the'conveersion rate 
constant' from immaature and'maature prey population to 'maature and immaature predator population 
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cannot' exceeding the maximum'predaationratee constant' from mature predaator population' to 
immaature and mature' prey populatiion', hence from the biol logical' point of  view, always   

   and   , we get: 
 

 
 
Now by solving this differentiial inequality for the initial value  we get: 
 

Hencee all' the solutions  of' system (2) are unifoirmlyboundeed'.  

 

3. THE EXISTENCE OF EQUILIBRIUM POINTS  

In this section, the existeence of all' possible equilibri ium points of' system (2)is discussed'. It is 
observed' that, system (2) has at' most three nonnegative equilibri ium' pointswhich are in 
thefollowing: 
 The equiliibrium point'  always exi ists. 
 The equiliibrium point , exists uniquely in   if the following condiition 

hold: 

 

 Finaally' the positiiveequilibriium' point  , exiists if' the following'conditiion hold: 

 

4. THE STABILITY ANALYSIS 
 
In this section the local'stabiilityanalysiis of' system  around each of' the above equiliibrium points' 
is discusseed' through computiing the Jacobiianmatriix  of' system (2):  
 The characteriisticpolynomiial of' the Jacobiian matrix of'systeem at gives the 

four eigeenvalues of   with negativee real parts provided that the following condiition holds: 
 

 
 

Then  is locally asymptotiically stable in  undeer the condition  . Howeever, it is a saddlee 
point (unstablee) otherwisee. 
 

 The characteristiicpolynomiial of  the Jacobian matriix of' system at '  gives the' 
four eiigenvalues of'  with negatiive real' parts due to the' following condiitions: 

 

 
 

 
Hencee,  is locally asymptotiically stable in undeer the condiitions(6-8). Howeever, it is a 
saddlee (unstablee) point otherwiise. 
 

 Finaally, then the charactereisticequatiion of the Jacobi ian matrix of' system at  is given by:  
 

 
 

 
. 

 

 

where,  
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Now by useing'Routh-Hawiritizcritierion equation 'has roots (eigenvaluees) with negative real 
parts if' and only if i = 1,3,4 and'  Clearly,  
provided that: 

 

 

 

 

 

 
Hencee,  will' be posiitive if' in addiition of'cond iitions ( - ).Thereefore, all' the eigenvaluees 
of'  have negaative real' parts undeer'the given condiitions and'heence  is 'locaallyasymptiotically 
stable. Howeever, it is unstablee otherwise.  

 

5. GLOBAL STABILITY ANALYSIS 
 
In this section the global'stabiilityanalysiss for 'the equili ibrium  points which are 'locally 
asymptotiically stable of' system (2) is studied'analytic aally with the 'help of'Lyapunov method' we 
get: 
 
 Assumee that  is locaallyasympto iticallystablee in . Then  is globally 

asymptoiticallystablee on the reegion  where   
 
 Assumee that is a locaallyasympto iticallystablee in . Then  is a globally 

asymptoitically stable on the region  that satisfi ies the following condiitions:   
 

 

 

 Assumee that of system is locally asymptoiticallystablee in the . Then  is 
a glloballyasymptoiticallystablee on any reegion that satisfiies the following condiitions: 

 
 

 

 

 

 

 

6. NUMERICAL ANALYSIS OF SYSTEM  
 
In this section, the dynamiical'behaviior of' system (2) is stud iied'numeriically for' one set' 
of'parameteers and'diffierent' sets of'initiial' points. The objec itives of' this study are: first'inveestigaite 
the effeect' of'varyiing the valuee of' each parameteer' on the dynamiical' behavior of' system (2) and' 
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second'confiirm our obtaiined'analytiical'reseults. It is obseerved' that, for the following 
set'of'hypothetiical'parameteers that'satiisfiesstabiilitycondiitions of' the positiiveequiliibrium point, 
system (2) has a globally'asymptoitically' 
 stable positive' equilibrium point' . 
 

 
 

Further, wiithvaryiing one parameeter each tiime, it iisobseerved that varyi ing the parameetersvaluees,  , 
and  , do not have e any effect on the dynamiicalbehaviior of 

system (2) and the solutiion of the system stiillapproeaches to posiitiveequiliibrium point 

 By varyiing  in the rangee , causeesextiinction of all speciees and the 

solutiion of system  approaches asympto itically to , as shown in Fig. , for typiicalvaluee

, whilee the increeasing of this parameeterin the rangee  the solutiion of system 
(2) approacheesasymptotiically to   in the int. of ,as shown in Fig. ,  for 
typiicalvaluee  further increeasing this parame eter further in the rangee the 
solution of system approacheesasymptoitically to the equiliibrium point in the int. of , as shown 
in Fig. ,   for typiical value . 

Fig Tiimeseriees of the solutiion of system  for the data given by  with  whiichapproachees 
to  ,  Time seriees of theesolutiion of system  for the data given by wiith  
whiichapproachees to , (c): Time seriees of the soluti ion of system  for the data given by 

 with   whiichapproachees to  in the int. of . 
 
Varying the parameteer  , and keeping the rest of parameteers as data given in   in the 
rangee  it obseerved that the soluti ion of system approacheesasymptotiically to 

 However, increeasing this parameeter in the rangee causeesextiinction in the 
preedatorspeciies and the solutiion of system approa achesasymptoitically to  in the 
int. of ,then increeasing in the rangee causeesextiinction in all speciees and the 
solutiion of system approaachesasymptoitically to The effeect of Varyiing the 
parameeter  , with and keeping the re est of parameeters as data given in it 
is obseerved that the solutiion of system approaaches asympto itically to , whilee the increeasing 
of this parameeter for  leads that the soluti ion of system 

approaachesasymptotiically to  Moreover, keeping the reest of parameetersvaluees as data 
given in  with  the solutiion of system 

approaachesasymptotiically while the increeasing of this parameeter for  leads 
that the solutiion of system approaachesasymptotiically . Fiinally, the parameeters ,  and , 
havee the same effeect on the beehavior of solutiion of system (2) and keepiing the reest of parameeters 
as data given in  in the rangee it is obseerved that the solutiion of 
system stiillapproaachesasymptotiically to , while the increeasing of this parameeter for 

 leaads that the solutiion of system approaachesasymptoti ically to  
 

CONCLUSIONS AND DISCUSSION  
In this paper, we proposeedand' analyzed an ecologiical' model that deescribed' the dynamiical'beehavior 
of' the stagee-structured' of preey-preedator in both speciies with harvesting and toxiciity. The 
modelincludeed four non-lineear autonomous diffeerentialequati ions that deescribe the dynamiics of' four 
diffeerentpopulatiion, naamely first immaatureprey , maature prey , immaaturepreedator  
and'maaturepreedator . The boundedneess of' system (2) has been diiscusseed'. The 
existeencecondiitions of' all' possible equiilibrium points are obta iin. The locaal' as well' as 
global'stabiilityanaalyses of'theese points are carriied' out. Finaally, numeriical'siimulation is used' to 
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speciify the control' set of parameeters that aaffect the dyn aamiics of' the system and'confiirm our 
obtaiined'analytiicalreesults. Therefore system (2) has been solved'numeerically for diffeerent sets 
of'iniitial' points and a set of'parameetersstartiing with the hypothetiical'seet of' data given by eq. (21) 
and' the following obseervations are obtaiineed'. Thee system with iin the seet of'parameteersimposeed'doees  
not havee a peeriodicsolutiion. For the seethypotheetical'parameetersvaluee given in (21), the system (2) 
approaachesasymptoitically' to globally stableepositi ive'point  
Further, wiithvaryi ing one parameeter each tiime, it is obseerved that vaarying the parameetersvaluees,  
, and  do not have e any effeect on the dynamicaal'behaviior' of' 

system (2) and the solutiion of' the systeem still'approaaches  The parameeters  and 

 have a bifurcatiion with two valuees   respeectively. Fiinally, the 
parameeters  ,   and havee a bifurcatiion with valuees 1.226 ,  0.106  and   =  = = 
0.251 respeectively. 
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 ABSTRACT 

In this paper, we investigate the properties of the exponentiated q-exponential distribution. 
The distribution has been compared with the q-exponential distribution in terms of the moment 
measures, distribution measures, survival function and failure rate function. Also, the maximum 
likelihood estimators of the unknown parameters in both distributions have been investigated. 
Finally, a real time to event data analysis is discussed. 

Keywords: Exponentiated Family, hazard function, Survival Analysis. 

1. INTRODUCTION 

The q-Exponential distribution (QED) introduced in [9] by maximizing the Tsallis 
entropy with respect to a moment constraints. This proposal enables the development of 
statistical distributions used as an alternative to the classical exponential distribution in 
fitting growth or time to event data. Moreover, The QED is a generalization of some lifetime 
distribution such as Lomax distribution, and it is a particular case of the generalized type II 
Pareto distribution [2]. The QED probability density function f(x) of some variable is 
defined as [13]:  

                   (1) 

 Where;  given that q < 2 and  . 

 
Also, the cumulative distribution function cdf of QED is 
 

                                                                         (2) 

 
Since the last few decades, generalized models are more useful in biostatistics and other fields 
such as medical, health, and reliability analysis. These generalizations include the idea of 
exponentiated distribution which introduced by [10] who discussed a new family of 
distributions termed as an exponentiated exponential distribution. [4] studied beta 
exponentiated Weibull distribution. [5] Discussed the exponentiated moment exponential 
distribution and generalized exponentiated moment exponential distribution among others. 
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2. EXPONENTIATED Q-EXPONENTIAL DISTRIBUTION

The idea of exponentiated distribution was introduced by [3]who discussed a new family of 
distributions they observed that many properties of the new family [8], and a number of authors 
have developed various category of these distributions, The Exponentiated Exponential 
distribution proposed by [3], however, [12] introduced the Exponentiated Weibull distribution 
and in a similar way, [14] proposed the exponentiated gamma and exponentiated Frechet and 
exponentiated Gumbel distributions [11]. 

The exponentiated exponential distribution is generalization of the standard exponential 
distribution,the family has two parameters (scale and shape), such an addition of parameters 
makes the resulting distribution richer and more flexible for modeling data, [7] added positive 
parameter to a general of survival function.  

Assume that T is a continuous random variable with probability density function (pdf) g(t) 
and cumulative distribution function (cdf) G(t), then the exponentiated cdf and pdf  are defined 
respectively as [1]: 

 
 

         And                   

 
 

Accordingly, the cdf and pdf when of the Exponentiated QED are given respectively       
as: 

 

                                                                 (3) 

and 

                     (4) 

 

Where, , are all real positive number which play the role of 
the shape and scale parameters [6]. 

3. RELIABILITY MEASURES:  

 
Survival time is defined as the time from the fixed original point to the beginning of the 

event of interest.  Assume for now that is a continuous random variable with probability 

density function and cumulative distribution function giving the 

probability that the event has occurred by duration , survival function indicates the 

probability that the event of interest has not yet occurred by time is given by. The time to 
failure analysis deals with the length of time that a system remains operational until 
experiencing a failure [15], then the hazard function is the ratio of the probability density 

function to survival function  
f t

h t
S t

. 

 
    Corollary (1): Let T be a r.v. from QED distribution given in Eq.(1) and Eq.(2) then the 
survival function and the failure rate function (Hazard function) are given respectively as: 
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           And                     

 
Corollary (2): Let T be a r.v. from Exponentiated QED distribution given in Eq.(3) and 

Eq.(4) then:  

,  

. 

 
Moment Measures 
Therefore, we derived expressions for some important moment measures.  

Corollary 3: Let T be a r.v. from QED distribution given in Eq.(1) and Eq.(2) then the first 
four moments of the distribution when q > 1 are given in Table 1. 

 
 

 
 
 
 
 
 

 

               Table 1. The first two moments of QED 

Corollary 4: Let T be a r.v. from Exponentiated QED (EQED) distribution given in Eq.(3) and 

Eq.(4) then the first four moments of the distribution when q > 1 and are given in Table2. 

 
 

Moment            Mathematical expression 
1 

 

2 

 

 
Table 2. The first two moments of EQED 

Where:   

 

Then,    

 
 

Moment Mathematical expression
1 

 

 
 

2 
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4. MAXIMUM LIKELIHOOD ESTIMATION

Numerous estimation methods are recommended in statistical theory but the maximum 
likelihood estimation method is the supreme used. Let X is random variable following 
Exponentiated QED distribution of size n with a vector of parameters . Then sample 
likelihood function is given as: 

 

 Log-likelihood function is 

 

The exact solution of the estimator is not possible. So it is well-situated to use Newton-Raphson 

algorithm to maximize the above likelihood function numerically. One can use R or 

MATHEMATICA. 

5. APPLICATION TO TIME TO EVENT DATA 

In this section, we provide a time to event (TTE) data analyses to assess the goodness-of-fit of QED 
and EQED distributions.The data set described by [16] represent the survival times of patients tribulation 
from Head and Neck cancer disease and treated by a combination of radiotherapy and chemotherapy for 
44 patient. 

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 
74.47 81.43 84 92 94 110 112 119 127 130 

155 159 173 179 194 195 209 249 281 319 
519 633 725 817 1776 36.47 133 339 68.46 140 
432 78.26 146 469       

Table 3. TTE Survival Data 

The maximum likelihood estimates (MLEs), the corresponding standard errors of the unknown 
parameter for the TTE data are presented Table 4. 
 
 

 QED EQED 
Estimate Value S.E Value S.E 

 0.0127 0.0042 0.0224 0.0124 
 1.4162 0.0942 1.3595 0.0845   
 ** ** 2.0293 0.6985   
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Table5. Goodness of fit tests 
 
Several goodness of fit criterion were used to test if the data fit the model including, Akaike 
information criteria (AIC), Bayesian information criteria ( BIC), and two distribution tests; K-
S and Anderson-Darling (A-D).   

The goodness of fit results was acceptable and all values for EQED is less than the goodness of 
fit tests of QED. The results indicate an excellent fit with K-S distance value between the 
empirical and the theoretical with P-values for QED and EQED equal to 0.48 and 0.98, 
respectively. The results indicated that adding a new parameter to the distribution leads to a 
better fit to the data. 

CONCLUDING REMARKS 

 In this article, EQD is discussed and EQED is proposed. A mathematical treatment of 
the suggested distribution including some formulas for the probability density and distribution 
functions, hazard, reliability are provided. The formulas of the first fourth moments are given 
under some restrictions and the estimation of the parameters using by maximum likelihood 
method are given in the unclosed form. The usefulness of the suggested distribution is 
illustrated in an analysis of TTE data. 
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 AIC BIC KS A P-value 
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ABSTRACT 

In this tutorial, the information theoretic estimation approach as proposed by 
"Golan, A., G. Judge, D. Miller. (1996) [Maximum entropy econometrics: Robust estimation 
with limited data. New York: John Wiley and Sons]" for estimating a nonlinear regression 
model will be illustrated. The tutorial is divided into two parts; theoretical and empirical. 
The theoretical illustration will be used for estimating the unknown parameters of the 
quadratic regression model. However, the empirical illustration will study the performance 
of using different entropy measures (i.e., Shannon, Renyi and Tsallis) in estimating the 
probability of a discrete event.  

Keywords: Generalized Maximum Entropy, Entropy Measures, Jayne's dice Problem, Nonlinear 
Regression. 

 

1. INTRODUCTION 

The problem of statistical inference is well known as a process of using data analysis 
to investigate the properties of an underling distribution.  However, when the underling 
distribution is unknown we need advance statistical procedure for drawing inferences from 
limited and insufficient information. One of these statistical procedures was suggested by 
[15]; which consider the foundations of information theoretic approach in statistical 
inference or the inference under uncertainty.  As a consequence,[11, 12] proposed a 

on the recog
solving any inferential problem witha well- defined hypothesis space and noiseless but 
incomplete information.This formalism was subsequently generalized to the linear model 
by [8]; who suggested the generalized maximum entropy (GME) estimation approach. Then 
after, many researchers extended and developed the idea of GME to several linear models 
[1, 2, 3, 4, 5, 6, 7, 8, 9] 

 
 
In this paper, the information theoretic approaches ME and GME will be discussed in estimating 
the unknown distribution and in the context of the quadratic regression models, respectively. 

The rest of this article is organized as follows, Section 2 the definition of the entropy will be 
given and some entropy measures will be defined. Section 3 an illustration of the GME 
estimation procedure in fitting the quadratic regression model. Section 4 will illustrate the 
Jayne's diceproblem in estimating the unknown distribution using different entropy measure. 
The article ends with a concluding remark section. 

2. ENTROPY DEFINITION  

 
Entropy as a mere word has a high diversity in meaning and also developed and 

used in many fields; the origin of it derived from the Greek meaning "transformation"; an 
important concept in thermodynamics/ physics which states that any change occurs 
spontaneously in a physical system must be accompanied by an increase in the amount of 
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"entropy" here it means the amount of changing in a system[1].In earlier 1870's a statistical 
scientists gave "Entropy" a statistical meaning related to the probability theory such as 
Boltzman, Gibbs and Maxwell considering entropy as a measure of the information. In 1948, 
Shannon introduced the information theory (concept of it: having a way to transfer the data 
of any type or size without having any loss)how considered entropy as a fundamental 
concept and a basic measure in that precisely measures the amount of the data (in bit) 
including the error (which called uncertainty amount). The entropy can be measured by the 
maximum information that can be obtained from an event, at the same time; the information 
can bemeasured by the occurred probability of that event. Accordingly, many entropy 
measures can be define, for illustration as; let the X be a discrete random variable with K 
possible outcomes; say ; where the probability of occurence of the jth outcome 
is  such that  (Figure.1) 

 

 

 

 

Figure 1. Illustration of a discrete random variable with finite probabilities 

Then the information of a the jth event can be obtained as  ; where 

the amount of information is defined as . Accordingly, [15] 

defines the entropy as the expected information content of an outcomeof X with a discrete 
probability distribution Pas H(P); Illustration is given in (Figure 2). 
 
 
 
 
 
 

Figure 2. Illustration of Information Vs. Entropy 

There are many poplar generalized entropy measures [14, 16], the most interesting and well-
known in information theory are 
 

 Renyi Entropy    ,    where ;  and 

 Tsallis Entropy  ,     where > 0  

 
Noting that, both measures of order 1 are reduced to the Shannon Entropy, (Figure 3). 
 
 

 
 
 
 
 

Figure 3. Relationships between Shannon Entropy and Renyi or Tsallis Entropies 

  
X 

 

 

 

X
 

 

 

T(1) 

H(P) 
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3. FITTING QUADRATIC REGRESSION MODEL

 
Quadratic regression model is a polynomial regression model of order 2. In general, 

quadratic regression is a process of fitting parabola equation to a set of data which can be 
represented in the following equation [13]: 

                               (1)                             

Where  are the unknown parameters and y is the response variable while x is the 
explanatory variable. There are several estimation methods that can be used to fit 

 .However; our interesting in this article is to use the GME as a new estimation method. 
Unlike the ME, the GME has an extra step in unknown parameters are not in probability forms 
before starting the estimation process. Therefore, Following [3, 9, 10] we should rewrite the 
unknown parameters given in Eq.(1) as a convex combination to a discrete random variable. 
Accordingly, the new formulation of the unknown parameters and the error term will be 
rewritten as: 

 

It is worth to say here some values should be known to the researcher before he starts in the 
estimation, these values includes k, r, s and m which reflects the number of unknowns in the 
new parameterizations. Based on [3], the research can select these values between 3 and 7. 
Moreover, the realizations which include {a, b1, b2, and v} are given values thatdistributed 
uniformly around zero. Now, the new model will be of the form: 

  (2) 

In this model we have {k+r+s+m*n} unknowns. However, based on the GME formulation we 
have {3+m*n} equations, therefore,  is an ill-posed models [7,8]. Using GME, the 
model can be estimated in four steps [1, 3]: 
 
Step.1: Re-parametrize the unknown parameters and the disturbance term (if they are not in 
probabilities form) as a convex combination of expected value of a discrete random variable.  
Step.2: Rewrite the model with the new re-parametrization. 
Step.3: Formulate the GME problem as a nonlinear programming problem in the following 
form 

Objective function = Entropy function 
Subject to 
(1) The re-parametrized model 
(2)  The Normalization constraints. 

 
Step.4: Solve the nonlinear programming by using Lagrange method. 

According to this algorithm the GME problem is 

Maximize  H( ) =  

Subject to: 

 

  ;    ;   
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Now, we will use the Lagrangian method to solve this problem and find the appropriate 
estimates for each parameter as follows: 

L = H( )+ (
) + ( ) +  ( ) + ( ) +  ( )  

Solving the first conditions, then we have: 

 ,    

 

 ,  

This will be applied on a numerical optimization package as R or Matlab to have the desired 
results. 

4. EMPIRICAL ILLUSTRATION: JAYNE'S DICE PROBLEM 

 
In 1957and based on the information theory concept (Shannon, 1948), a new 

estimation method raised by Jayne's called the Maximum Entropy Principle (MEP) which 
estimated parameters based on finding a probability distribution subject to some constraints 
came up basically from the data .The estimator that revealed by this way is not necessarily 

algorithm of ME is given by [1]. To illustrate this algorithm we revisited the Jayne's dice 
problem. The problem can be described as follows: When a dice is rollinga very large 
number of times "N", then the upper-face could be any value j such that j = 1,2, ..., 6 with 
corresponding probabilities , such that pi [0, 1] and . If we told that 
the average number of upper-faces was not 3.5 " which occurred with a fair dice", instead 
we assume the average to be "<a>" where a could be any real number between 1 and 6; that 
is to say . Then the problem is "what is the optimal distribution 
"probabilities of each event" in this experiment that satisfies both constraints. This is clearly 
an ill-posed problem which can be formulated based on the ME algorithm [1] as a nonlinear 
programming system(Figure 4). 

 

 

 

 

 

 
Figure 4. ME Mathematical programming system 

 
The model given in Figure 4, can be solved by applying the lagrangian method. We solved this 
problem under the assumption that <a> = 2.5 or 4.0; the results are given in Table 1. 

 

 

 

 

Where Entropy Measure 
Subjectto 
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Table 1: optimal solution of Jayne's dice problem 

Entropy  
Measure 

<a>        

H(P) 
2.5 0.346 0.239 0.165 0.114 0.079 0.055 1.61 
4.0 0.104 0.124 0.147 0.174 0.207 0.245 1.75 

R(0.5) 
2.5 0.368 0.225 0.152 0.109 0.082 0.064 1.70 
4.0 0.107 0.124 0.144 0.171 0.205 0.250 1.77 

T(0.9) 
2.5 0.352 0.237 0.162 0.113 0.079 0.057 1.77 
4.0 0.104 0.122 0.145 0.173 0.207 0.248 1.90 

 

It could be noted that from Table 1, the entropy value of Shannon measure is less than other 
entropy measures. Also, the probability values decreases (that is to say p1< p2 6) when 
the value of <a> less than 3.5; while the probability values increasing when <a> is more than 
3.5. 

CONCLUDING REMARKS 
 

This article discussed the steps that should be used in fitting quadratic regression 
model by using the generalized maximum entropy estimation approach. The GME 
suggestsof reparametrize the regression model by rewriting the unknown parameters as 
expected values of a discrete random variable then go through four steps in order to estimate 
the unknown parameters. An illustration is given using the Jayne's dice problem, using 
different entropy measures, the results indicated that Shannon entropy is the best measure 
to be use for fitting equation to data in terms of minimizing the uncertainty of the estimator. 
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ABSTRACT  

-Lindely) is introduced, the p.d.f. is 
defined and also the CDF and Risk function and hazard function are estimated using methods 
of moments and maximum likelihood and L-moment. The comparison is done through 
simulation using different values of sample size n and different set of initial values of parameters 

s obtain using (function fsolve) in program (MATLAB R2012a) and 
function x=fsolve(fun, xo) and all the results of estimation are explained in tables, and also 
conclusions and referenced are exposed. 

Keywords: imators (MOM); Maximum 
likelihood estimators (MLE). 

 
1. INTRODUCTION 
Quasi Lindely probability distribution is one of the mixed distributions for exponential 

 
work on introducing mixed distribution like Lindely [1] and Sankaran [3] introducing 
lindely with discrete Poisson also Gupta and Kundu[4] introduced generalized 
exponential with estimation as well as in Lindely[1] introduce fiducial distribution with 
applying bayes estimators to estimate Risk function and Lindely[2] compared different 
baysian estimator for parameters of lindely distribution shanker and Mishra [5] 

n, here we continue the work about 
this distribution and we apply three different methods like moments and L-moments 
and Maximum likelihood method to compare the Risk function of two parameters 
(quasi-lindely)[6][7][8]. 
 
2. THEORETICAL ASPECT 
2.1 Quasi Lindely 
It is one continuous distribution obtained from mixing: 

         x>0                                                                          (1) 
 

                                                                                           (2) 
                                                             (3) 

=                                                                        (4) 

Equation (4) can be simplified to: 

                                            -1         (5) 

is scale paramet
 

                                           

While the cumulative distribution function is: 

=  

 
Therefore the CDF of Quasi lindely is: 
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                         x -1                                (6) 

We can also prove that (mr), the rth formula about origin is: 
                                                                  (7) 

Using transform  

                                                                           (8) 

From Mr we find: 

  =                                                                                (9) 

And  

 = Then the variance is: 

    (10) 

And also we can find the coefficient of variation (C.V.)  

C.V. = =                                                                           (11) 

After we define the distribution and its mean and variance, we work on estimating its 
-moments and maximum 

likelihood and then comparing estimators by simulation procedure and use these 
estimators (  to estimate risk function h(t) which is: 

h(t)=  for human application and h(t)=  for tools and equipments. In our studied 

probability distribution the hazard function: 

h(t)=                                              -1,   

and  

2.2 Moments estimator 
The estimators by this method obtained from solving equation: 

for r=1, 2 

 

 
Then                    

(12) 

This equation solved numerically by fixed point method. 
According to given values of  and values { } at sample size (n), also we can 
use (function in f solve) in program (MATLAB r2012 a). 
X= f solve (fun, x0) 
Finding  , we can use it to find   from solving equation (13): 
 

(13) 

 

(14) 

Solve by fixed point method to find the estimator  . 
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2.3 Estimation by L moments
This method is due to Hosking (1990) which depend on order statistics for expected 
value of liner components from order Statistics. 
Here we have two parameter  so we need two linear moments were first find the 
formula of  from equation (14) (Linear moments). 

 
While linear moments for sample is: 

 

(15) 

And then we equate population moments  ,  with  
(16) 

(17  

Now the estimator by L- Moments produce: 

(18) 

(19) 

Solve equation (19) numerically gives ( ) then use introduce 
)  

(20) 

2.4 Maximum likelihood method 
Let x1, x2 n be ar.s from P.D.F in equation (5), Then: 

 

     (21) 

Then   And   

From   ,     (22) 

 

(23) 

 
3. SIMULATION PROCEDURES 
We comparing three estimators of risk function by simulation procedure were the data 
is generated we assume sample size n=20, 40, 60, 80. And generate the values of 

method of (reject and accept) using the following steps: 
1) Generate random variable Ui distributed uniformly u    u (0,1). 
2) Generate another two random variables z exp( and vi  gamma (2,  ). 
3) Let  if ui  then Xi=Zi  otherwise Xi=Vi 

4) Estimate parameters of (Q.L) by (i) method of moments (ii) method of L- 
moments (iii) methods of maximum likelihood. 

5) The comparison between estimators of   is done using mean square error 

MSE, i.e.:  
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= 0.5,  
 
 

Table 1:Estimators of risk function 
n   ti    

20 0.5 0.8 

1.5 0.3378 0.3187 0.3062 
2.5 0.3978 0.3752 0.3698 
3.5 0.4069 0.4612 0.4802 
4.5 0.3135 0.3051 0.3062 
5.5 0.3472 0.3321 0.3473 

20 0.5 1.5 

1.5 0.3152 0.3224 0.3116 
2.5 0.4022 0.3252 0.3462 
3.5 0.4632 0.3637 0.3725 
4.5 0.4031 0.4166 0.4235 
5.5 0.4421 0.4617 0.4382 

20 1.2 0.8 

1.5 0.4152 0.4170 0.4231 
2.5 0.3613 0.4228 0.4116 
3.5 0.3825 0.4107 0.4221 
4.5 0.3746 0.41106 0.4017 
5.5 0.4170 0.4005 0.4003 

20 1.2 1.5 

1.5 0.4165 0.4325 0.4227 
2.5 0.4636 0.4265 0.4266 
3.5 0.4601 0.4394 0.4278 
4.5 0.4421 0.4255 0.4166 
5.5 0.4392 0.4106 0.4005 

 
 
 

Table 2:  Estimators of Risk function   of Q.L. 
n   ti    

40 0.5 0.8 

1.5 0.4088 0.4188 0.3166 
2.5 0.4852 0.4663 0.3624 
3.5 0.5321 0.4502 0.4088 
4.5 0.5506 0.4356 0.4521 
5.5 0.5563 0.5113 0.4312 

 
Table 2 (Continued) 

 

40 0.5 1.5 

1.5 0.6141 0.5221 0.4025 
2.5 0.6233 0.5662 0.5763 
3.5 0.6011 0.5582 0.5766 
4.5 0.5892 0.6043 0.5822 
5.5 0.5713 0.6122 0.5831 

40 1.2 0.8 

1.5 0.5561 0.6003 0.3322 
2.5 0.5368 0.6112 0.3842 
3.5 0.5311 0.6132 0.3226 
4.5 0.5677 0.6141 0.4205 
5.5 0.5078 0.6631 0.4762 

40 1.2 1.5 

1.5 0.5146 0.4663 0.4612 
2.5 0.5526 0.4509 0.4663 
3.5 0.5106 0.5403 0.5132 
4.5 0.5312 0.5266 0.5300 
5.5 0.5441 0.5466 0.5433 

 
 
 
 
 
 
 
 
 
 
 



215 
 

Table 3: Continue comparing estimators of hazard function of Q.L. 
n   ti    

60 0.5 0.8 

1.5 0.4335 0.4298 0.3274 
2.5 0.4902 0.4783 0.3752 
3.5 0.5416 0.5206 0.3482 
4.5 0.5662 0.5703 0.4036 
5.5 0.5837 0.5663 0.4452 

60 0.5 1.5 

1.5 0.3467 0.4076 0.3602 
2.5 0.4768 0.4767 0.3675 
3.5 0.3202 0.5320 0.4217 
4.5 0.5388 0.3988 0.4452 
5.5 0.5702 0.6148 0.4906 

60 1.2 0.8 

1.5 0.4224 0.4036 0.3263 
2.5 0.4736 0.4828 0.3862 
3.5 0.3167 0.5166 0.4212 
4.5 0.5467 0.5467 0.4456 
5.5 0.6078 0.5782 0.4227 

60 1.2 1.5 

1.5 0.3928 0.6122 0.3536 
2.5 0.4652 0.6037 0.6261 
3.5 0.5088 0.5083 0.5142 
4.5 0.5436 0.6642 0.5521 
5.5 0.6036 0.6651 0.5136 

 
 
 

Table 4: Comparing estimators of hazard function of Q.L. 
n   ti    

80 0.5 0.8 

1.5 0.3987 0.4036 0.3864 
2.5 0.4637 0.4726 0.4677 
3.5 0.5082 0.5271 0.5022 
4.5 0.5392 0.5467 0.5536 
5.5 0.5514 0.5334 0.5542 

80 0.5 1.5 

1.5 0.3886 0.4761 0.6019 
2.5 0.4617 0.5062 0.6211 
3.5 0.5072 0.4582 0.5306 
4.5 0.5498 0.5563 0.5241 
5.5 0.5567 0.5571 0.5321 

80 1.2 0.8 

1.5 0.6332 0.5572 0.5516 
2.5 0.6034 0.5862 0.5312 
3.5 0.6115 0.5599 0.5528 

Table 4 (Continued) 
 

4.5 0.6273 0.5603 0.5528 
5.5 0.6374 0.5432 0.5762 

80 1.2 1.5 

1.5 0.3962 0.5531 0.5832 
2.5 0.4667 0.8054 0.6061 
3.5 0.5132 0.6321 0.6364 
4.5 0.5416 0.6255 0.6472 
5.5 0.5521 0.6284 0.6566 

 
 
 
 

Table 5: values of mean square error for estimating reliability function by three models 
 

Model N MLE MOM BEST 

I 
25 
50 
75 

0.010976 
0.002115 
0.00097 

0.010964 
0.005316 
0.002987 

MOM 
MLE 
MLE 

II 
25 
50 
75 

0.01664 
0.00403 
0.00254 

0.01464 
0.00758 
0.0055 

MOM 
MLE 
MLE 

III 
25 
50 
75 

0.012014 
0.00342 

0.001859 

0.009148 
0.00643 

0.001992 

MOM 
MLE 
MLE 
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CONCLUSIONS

estimators of Risk function, we find that   ,  

and  , and  

i.e. the first best one is MLE and then MOM and finally LMOM. 
(2).  In case of estimations in Reliability function we need to compute Reliability function for 
distribution of time to failure, but for biological application and medical applications we need 
to compare results by Risk function. 
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ABSTRACT  

An endomorphism of a ring  is called weak symmetric if whenever the product of any three 
elements of a ring , , is a nilpotent element of , then so is . A ring  is called weak 

-symmetric if there exist a weak symmetric endomorphism  of . The notion of weak  -
symmetric ring is a generalization of -symmetric rings  as well as an extension of symmetric 
rings. In this paper, we investigate characterization of weak -symmetric and there related 
properties including extensions: In particular, we show that every semicommutative and weak 

-symmetric ring is weak -skew Armendariz. We also proved that, the semicommutative ring 
is weak -symmetric if and only if the polynomial ring  of   is weak -symmetric.  

Keywords: semicommutative ring; - -skew 
Armendariz rings 

1. INTRODUCTION 

Throughout,  denotes as associative ring with unity. For a ring  with a ring endomorphism 
, a skew polynomial ring  of  is the ring obtained by giving the polynomial 

ring over  with the new multiplication  for all . For a ring , we denoted by 
 the set of all nilpotent elements of  and by  the polynomial ring with an 

indeterminate  over . A ring is called reduced if it has no nonzero nilpotent elements. Lambek 
called a ring  symmetric [8] provided  implies  for , , . Every reduced 
ring is symmetric ring [11, Lemma 1.1]. Cohn called a ring is reversible [3] if  implies 

for , , reversible rings are semicommutative, i.e., whenever  we have 
 for each element  of the ring, and semicommutative rings are abelian, namely, satisfy 

" idempotents are central " condition. Lambek called a right ideal  of a ring  symmetric if 
 implies  for all , , . If the zero ideal is symmetric then  is usually called 

symmetric. An endomorphis  of a ring  is called a weak reversible if whenever  
for , , . A ring  is called weak -reversible if there exist a weak 
reversible endomorphism  of  [1]. A ring is said to be -compatible if for each , ,

 [4]. According to Krempa [6], an endomorphism of a ring  is called to be 
rigid if  implies  for . A ring is called -rigid if there exist a rigid 
endomorphism  of . A ring  is -rigid if and only if  is -compatible [4, Lemma 2.2]. By 
[10],  is said to be weak - rigid if . Also, a ring  is weak -
rigid and reduced if and only if  is -rigid. An endomorphism of a ring  is called right (left) 
symmetric if whenever  for , , , . A ring is called 
right (left) -symmetric if there exist a right (left) symmetric endomorphism  of  [7]. 
The notion of -symmetric ring for an endomorphism  of a ring  is a generalization of  -
rigid rings and an extension of symmetric rings. By [7, Theorem 2.8], a rings is -rigid if and 
only if  is semiprime and right -symmetric. Also, if the skew polynomial ring  of a 
ring  is a symmetric ring then  is -symmetric.  
    In this note, we introduce the concept of weak -symmetric rings with respect to an 
endomorphism  of . We considering the nilpotent elements instead of the zero element in -
symmetric rings to investigate the nilpotent elements in -symmetric rings. We also investigate 
connections between weak -symmetric condition and other related conditions such that -
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symmetricity and weak -rigidity. The relationship between -compatible rings and weak -
symmetric rings is also studied. To illustrate the concepts and results some examples are 
included.  

2. ON WEAK -SYMMETRIC RINGS. 

 
Definition 2.1. An endomorphism  of a ring  is called a weak symmetric if whenever 

 for , , , . A ring is called weak - symmetric if there exist a weak 
symmetric endomorphism  of . 
 
    It is easy to see that any subring  with  of a weak -symmetricring is also weak 

-symmetric. Also, if  is reduced ring then this definition coincides with the definition of -
symmetric ring [7].  
    The following example shows that there exists symmetric ring which is not weak -
symmetric for some endomorphism  of . 
 
Example 2.2. Let ,  where  be any non-zero symmetric ring. Then  is symmetric. 
Now, let , given by , , . For (1,0), (0,1), (1,1),

 but . Therefore  is not weak -symmetric.  
 
    For an endomorphism  of a ring  the map  defined by 

 for each  is a ring endomorphism of . 
 
Proposition 2.3.A ring  is weak - symmetric if and only if the upper triangular matrix ring 

 over  is weak -symmetric. 
 
Proof One direction is trivial, since any subring  with  of a weak -symmetric is 
also weak -symmetric. Let ,  and  such that 

. Then  for each . Since  is weak -symmetric. Then 
 and the result follows. 

 
    Recall that for a ring  and an , -bimodule , the trivial extension of  by  is the ring 

,  with the usual addition and the multiplication , , ,

. This is isomorphic to the ring of all matrices , where  and  and the 

usual matrix operations are used.  
 
Corollary 2.4. Let  be an endomorphism of a ring . Then  is weak -symmetric if and only 
if (R,R) is weak -symmetric. 
 
    It is clear that any weak -symmetric ring is weak -reversible. Since every -by-  full 
matrix ring  over a weak -reversible is not weak -reversible [1,Example 2.5]. Then 
every -by-  full matrix ring  over weak -symmetric is not weak -symmetric, where 

. 
 
Proposition 2.5.Let  be a ring with an endomorphism . 
(1) If  is a monomorphism, then each weak -symmetric ring is weak -rigid. 
(2) If  is a symmetric ideal, then each weak -rigid is weak -symmetric. 

 
 
Proof  
(1) Let . Then , since  is weak -

symmertic. There exist  such that . Hence , since  is a 



219 
 

monomorphism. Conversely, let then , because is weak 
-symmetric. 

 Let , then  and , hence 
 since  is an ideal. So  

because  is weak -rigid. Hence  and  , since 
 is a symmetric ideal.

 
Lemma 2.6. Let  be a weak -symmetric ring if , then  and 

, for any positive even integers , . 
 
Proof  Let . Since  is weak -symmetric ring, then  and 

. By using again the weak -symmetricity, we have  and 
, then  and , hence . 

Continuing this process we get  where  is an even positive integer. On the 
other hand, if  then , using the above method for , we get 

, hence  where  is a positive even integer. 
 
Proposition 2.7.For any weak -symmetric ring , we have the following statements: 
(1) If  is a monomorphism, then . 
(2)  if only and only if , for any central idempotent .  

 
Proof  
(1) Suppose that is a monomorphism of a ring . Then 

, , since  is weak -symmetric, then 
. Since  is a monomorphism, then . Note that  is 

an idempotent of , and then we get . So   . 
(2) Let  be a centeral idempotent in , then . Hence 

. Thus there exists such that
. Then , so . Similarly 

 and this implises . Thus,  . Therefore 
. The converse is clear.  

 
Theorem 2.8. Let  be an abelian ring with  for any . Then the 
following statements are equivalent: 
(1)  is a weak -symmetric ring. 
(2)  and  are weak -symmetric. 

 Proof. Since any subring  with  of a weak -symmetric ring is also weak -
symmetric, so we will prove . Let , ,  such that . Then 

 and . Since  and  are weak 
-symmetric, then  and . Hence 

. Therefore  is weak -symmetric ring.  
 
Let  be an endomorphism of a ring . An ideal  of a ring  is said to be -stable if 
. If  is an -stable ideal then  defined by  for  is an 

endomorphism of the factor ring [1]. 
 
Proposition 2.9.Let  be an -stable and weak -symmetric ideal of . If , then 

 is a weak -symmetric ring if and only if  is a weak -symmetric. 
 
Proof. Assume that  is weak -symmetric. Let  for , , . then 

. Thus , since  is weak -symmetric. So there exists a positive 
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integer  such that , then . Therefore  is weak -
symmetric.  
    Conversely, suppose . Then there exists a positive integer  such that 

. Since , . Thus  since  weak -
symmetric. Hence   and  is weak -symmetric. 
 
    By [11], a ring is called an Armendariz ring if whenever  where 

, , then  for each , . 
Liu and Zhao [9] introduced weak-Armendariz rings. A ring  is called weak-Armendariz ring 
if whenever polynomials ,

 satisfy , then  for each , . Each semicommutative ring is 
weak-Armendariz by [9]. 
    The Armendariz property of ring was extended to one of skew polynomials [5]. A ring  is 
called -skew Armendariz if for ,

 satisfy  then  for all  and  [5  
,Definition]. Zhang  and chen introduce and studied weak -skew Armendariz rings. A ring  
is called weak -skew Armendariz ring if for ,

 satisfy , then  for all  
and  [13]. 
 
Theorem 2.10. Let be a semicommutative ring. Then  is weak -symmetric if and only if so 
is . 
 
Proof  Since any subring  with  of weak -symmetric is also weak -symmetric, so 
we only prove  is weak -symmetric when  is weak -symmetric. Let 

,  and  such that . Since 
 is semicommutative, then by [1,corollary 2.17], we have the following equations: 

 
 (1) 

 (2) 
  

 (3) 
 

 

 

 
(4) 

 
Since  is semicommutative,  is an ideal of  by [9, Lemma 3.1]. since  
then , if we multiply the Eq. (1) from the left by , then it follows: 
 

  
So,  

 (5) 
 
Now if we multiply the Eq. (5) by  from right side, we can get 

,  so  and , hence,  
 (6) 

 
By multiply the Eq. (6) by  from left side, then it follows,  
and , so  and , then 

. Now suppose that  is a positive integer such that  when 
, we will show that  when . If we multiply the Eq. (4) from the 
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left side by , then it follows that . By induction hypothesis, 
 whenever . So , again multiply 
 by  from the left side, we get  when  and 

 if , hence  and . Now,  and 
 when . So we can use same argument as above to get 

 and , we conclude that  

 

For all , and . 

(7) 

 
Using again the induction hypothesis,  for , ,   
and  . Hence  for each , , . So  since  is 
weak -symmetric. Thus  by [1,corollary 2.17]. Therefore  is weak  -
symmetric. 
 
Theorem 2.11. Let be an endomorphism of a ring . If  is semicommutative and  -
compatible ring. Then the ring is weak -symmetric. 
 
Proof. Let ,  and  such that 

. Since  is semicommutative, then by [1, proposition 2.16] we 
have the following equations: 
 

 
 

 

 (8) 
  

 
 

(9) 

 (10) 
 
Since  is semicommutative,  is an ideal of  by [9, Lemma 3.1]. since , 
then .  is weak -reversible, hence , then 

. if  we multiply the Eq. (8) from the right side by , then it follows that : 
. Then . If we 

multiply the equation above by  from right side, we have 
 and since  it follows . so  and 

we get , then  , so  
again by multiplying this equation by  from the right side, we get  so 

 and , hence . continuing this 
process we have  for each , . Since  is -compatible, 

 and , hence  and . Since  is 
semicommutative,  and  so  and 

, hence  and  for each , ,  and 
 by weak -reversibleity of . Therefore  and the result follows.  
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ABSTRACT 

In this paper, we introduce a subclass of p valentnon-

of order . Some subordination relations and the inequality properties of valent 

functions are discussed. The results presented here generalize and improve some known results. 

Keywords: Analytic functions;non-  

 

1. INTRODUCTION AND PRELIMINARIES 

Let denote the class of functions of the form 

(1.1) 

which are analytic and valent in the open disc If and 

are analytic in , we say that is subordinate to , and we write: 

in or , ,                                                                                (1.2) 

if there exists a Schwarz function , which is analytic in with 

and , ,such that , . 

 
Furthermore, if the function is univalent in , then we have the following equivalence, 

see Miller &Mocanu ([3], [4]), and  

We define a subclass of as follows: 

Definition 1.1.Let denote the class of functions satisfying the 

inequality: 

z U (1.3) 

where B and All the powers in 
(1.3) are principal values. 
We say that the function in this class is valentnon-

. 

 
Definition 1.2.Let if and only if and it satisfies: 

 

                                                           
* Corresponding author         
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(1.4) 

where and  
 
Special Cases: 

(1) When then is the class studied by AlAmoush and Darus [6]. 

(2) When then is the class studied by Wang et al [1]. 

(3) When and then is the class studied by 

Obradovic [10]. 

(4) When and then reduces to 

the class of non- The Fekete-Szegö problem 

of the class were considered by Tuneski andDarus [2]. 

 
We will need the following lemmas in the next section. 
 
Lemma 1.3. [7] Let the function be analytic and convex in with . Suppose 

also that the function given by  
is analytic in . 

If z U (1.5) 

then 

and is the best dominant for the differential 

subordination (1.5). 
 

Lemma 1.4. [8]Let then  

Lemma 1.5. [9] Let be analytic and convex in , If

then  
 
Lemma 1.6. [11]Let be a convex univalent function in and let with

 

If the function z is analytic in and then, 

and is the best dominant. 
 
We employ techniques similar to these used earlier by Yousef et al. [13], Amourah et al. 
([14], [15]), AlAmoush and Darus [16] and Al-Hawary et al. [13]. 
 
In the present paper, we shall obtain results concerning the subordination relations and 
inequality properties of the class The results obtained generalize therelated 

works of some authors. 
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2. MAIN RESULT

 
Theorem 2.1.  Let and

If Then 

(2.1) 

 
Proof.Let 
 

(2.2) 

Then is analytic in with Taking logarithmic differentiation of (2.2) in 

both sides, we obtain  

 

In the above equation, we have  

 
From this we can easily deduce that 

(2.3) 

On a class of valentnon-  

(2.4) 

Now, by Lemma 1.3 for we deduce that 

 

 
Putting Then we have the above equation with 

and the proof is complete. 

 
Corollary 2.2.Let and If satisfies 

 

then 

 

or equivalent to 
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Corollary 2.3.Let and then 

 

 
Theorem 2.4.  Let and

then (2.5) 

 
Proof. Suppose that we have and 

 

 
Since therefore it follows from Lemma 1.4 that 

(2.6) 

 
that is So Theorem 2.4 is proved when  

When then we can see from Corollary 2.3 that then 

(2.7) 

But 

 

It is obvious that is analytic and convex in . Sowe obtain fromLemma 1.5 

anddifferential subordinations (2.6) and (2.7) that 
 

 

that is, Thuswe have
 

 
Corollary 2.5.LetLet and then 
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ABSTRACT  

In this paper, we apply an efficient algorithm based on the reproducing kernel Hilbert space 
method (RKHSM) to solve a fractional version of the non-linear logistic differential equation. 
The fractional derivative is presented in the Caputo sense. In order to show the accuracy and the 
applicability of this method, some numerical results are given. We compare the solutions of the 
proposed method with the exact solutions for integer order case. 

Keywords: Fractional Logistic Equation; Riemann-Liouville Fractional Integral; Caputo Fractional 
Derivative; Reproducing Kernel Hilbert Space. 

1. INTRODUCTION 

Logistic model was introduced to the population dynamics by Verhulst in 1838 [1] asa non-

linear first order ordinary differential equation where  is population at 

time ,  is Malthusian parameter, and  describes the carrying capacity.  

Let , then the following standard logistic differential equation (LDE) results: 

                   (1) 

This equation has the known exact solution: where  is related 

to the initial population. 
Logistic differential equation has many applications, see [2-4]. Moreover, fractional 

calculus hasa great importance in describing some complex physical phenomena in many fields 
[5-11]. The fractional logistic differential equation (FLDE) has been obtained by replacing the 
first order derivative inEq. (1) by the fractional Caputo derivative as 

                (2) 
subject to the initial condition 

                                                                                  (3) 
So, numerical methods are 

needed. Some of these techniques have been applied to solve FLDE [12-19]. In this paper, we 
use reproducing kernel Hilbert space method (RKHSM) to obtain numerical solution of Eq. (2). 
Reproducing kernel theory has important applications in mathematics, image processing, 
machine learning, finance and probability [20-24]. Hence a lot of research work has been 
devoted to the applications of RKHSM for wide classes of problems [25-31]. 

This paper is organized in five sections including the introduction. In section 2, some basics 
of fractional calculus and reproducing kernel theory are given. In section 3, a description of the 
RKHSM to solve the FLDE is discussed. In section 4, an example to show the reliability of the 
RKHSMis given. A brief conclusion is presented in section5. 

2. PRELIMINARIES 

In this section, we introduce some preliminaries of fractional calculus and reproducing kernel 
theory. For more details, see [29-31]. Throughout this paper is 
absolutely continuous on  

                                                           
 
* Corresponding author: Rania Saadeh 
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 Some basics of fractional calculus 

Definition 2.1. The Riemann-Liouville fractional integral of order  over for a 

function is  For ,  is the identity operator. 

Definition 2.2. The Riemann-Liouville fractional derivative of order  is defined 

by  

 
Definition2.3. The Caputo fractional derivative of order  is 

. 

 
Theorem 2.4. Let  and . Then  

Theorem 2.5.If  and , then C  
 
Since the Caputo derivative has been used in this paper only with , then the symbol 

will be used instead of . 
 

2.2 Fundamental concepts of the reproducing kernel Hilbert space method 

Definition 2.6.Let be a nonempty abstract set. A function  is a reproducing 
kernel of the Hilbert space  if and only if  

(1)  
(2)  

The function  is called the reproducing kernel function of and a Hilbert space which 
possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS).  

Definition 2.7. The space of functions  is defined as  
 

 The inner product and the norm for  are given by  

 and , respectively. 

 
Theorem 2.8. The space  is a complete RKHS with the reproducing kernel function 

 such that   

 
Definition2.9. The space of real functions  is defined as follows: 

 
The inner product and the norm for  are given by  

 and  , respectively. 

 
Theorem2.10. The space  is a RKHS and its reproducing kernel function  has 

the form . 

 



230 
 

3. THE RKHSM FOR SOLVING THE FLDE

Let us consider the FLDE in Eq. (2) with the initial condition Eq. (3). First we homogenize the 
initial conditionusing the substitution:  to get

Since , Eq. (2) and Eq. (3) become 
 

,                               (5) 
 

 

Define the differential operator  such that 
.Hence, Eq. (5) can be rewritten as  

Now, to construct an orthogonal function system of the space , consider the dense 
set of , and let   and , where  is the adjoint operator 
of  . In terms of the properties of the reproducing kernel we obtain 

 

 
 

Applying Gram-Schmidt orthogonalization process on produces the orthonormal 
function system  of the space .Let 

where are the orthogonalization coefficients, which are given by: 

, ,and , for  

 
Theorem 3.1. If  is dense on  and the solution of Eq. (5) is unique, then it has the 
form  
 

The -term approximate solution  of Eq. (5) is given by the finite sum such that 

 

 

Hence, the approximate solution of Eq. (2) and Eq. (3) is  

4. NUMERICAL EXAMPLE 

A numerical example is included to demonstrate the efficiency of the RKHSM. Results 
obtained by this method for FLDE are compared with the exact solutionand are found in good 
agreement with each other.  
 
Example 4.1. Consider the FLDE 
 

 
 

The approximate and exact solutions of different values of  are given in Table1and Figure1for 

 and . We take  
 
 
 
 
 
 

 

 

Table1: Numerical results for Example 4.1 for  using the RKHSM. 

  Exact
 

RKHS
 

Absolute Error 
 

RKHS Solution  

  

0.2 0.26921 0.26921  0.27366 0.28539 
0.4 0.28934 0.28933  0.29536 0.30942 
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0.6 0.31032 0.31032 0.31692 0.33101 
0.8 0.33212 0.33212  0.33860 0.35127 
1.0 0.35466 0.35466  0.36046 0.37063 

 

0.2      
0.4      
0.6      
0.8      
1.0      

      

      

CONCLUSION 

In this work, we applied the RKHSM to obtain approximate solutions for the non-linear FLDE. 
The fractional derivative was described in the Caputo sense. An example are given to show the 
efficiency of the proposed method. By comparing our results with the exact solution for integer 
order derivative, we observe that the proposed method yields accurate approximations. To see 
the effects of the fractional derivative on the logistic curve, we solved the same FLDE for 
different values of the fractional order. All computations have been performed using the 
Mathematica software package. 
 

 
 

Figure 1: Graphical results for Example 4.1 with  and (b) . 
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ABSTRACT  

The aim of this work is to extend the Taylor series method to higher dimensional fractal spaces. 
An analytical solution of higher dimensional fractional differential equations is provided with 
different fractal-memory indices in time and space coordinates simultaneously. To show the 
effectiveness of the proposed method, the method has been applied to three presented models 
in fractal 2D and 3D spaces. The attained closed-form series solutions are in a high agreement 
with the exact solutions for the corresponding equations when they projected into the integer 
space. 

 

Keywords: Fractional partial differential equations; Taylor series method; Memory index 

1. INTRODUCTION 

Fractional calculus was appeared in 1695, in Leibniz letter to L'Hopital, definitely after the 
classical calculus was constructed. The evolution of the fractional calculus is due to the 
achievements of many mathematicians such as Liouville, Riemann, Abel, and many others, 
where the huge importance of the fractional calculus in sciences encouraged them. Many 
Phenomena such that, viscoelasticity, heat diffusion, mathematical biology, electrochemistry 
[13,7], are presented as fractional partial differential models, from this point arises the 
importance to solve these Models. With the result that, many mathematical integer-order 
methods have been generalized to fractional type to convoy the developments in mathematical 
sciences, such as residual power series method by Alquran et al. [3], and Abu-Arqub et al [17], 
differential transform method by Jaradat et al. [12] and Taylor series. 
    Taylor series has been generalized by many researchers throughout the ages, Riemann, 
Watanabe, Trujillo and many others [14]. But all of them ignore the power law memory of time 
fractional variable and treat only the space fractional variable or vice versa [12]. Whereas many 
recent studies show that the importance of combining the space variables to fractional scope. 
From this point appeared the most powerful generalization of Taylor series over time and space 
fractal spaces by Jaradat et al.[10,2]. These new expansions enable the researchers to solve 
fractional partial differential equations (FPDEs) in higher dimensional fractal spaces where the 
space and time coordiates are endowed with fractional derivatives ordering. 
    Several definitions for fractional derivative and integration were introduced, the most useful 
fractional derivative operator is Caputo definition which we adopt in our work with the 
following representation [9]: 
 

         

(1) 
Where  
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2. THE CONSTRUCTION OF TAYLOR SERIES SOLUTIONS IN 
HIGHER DIMENSIONAL FRACTAL SPACES 

In this section, we introduce two different solution formulas for the (2+1)-D and (3+1)-D FDEs 
that are presented into fractal 2D and 3D spaces. In some sense, the hybrid fractional Taylor's 
formulas in 2D and 3D fractal spaces are obtained. We should mention that these expansions 
were used before to solve different FPDEs into different dimensions [1,2,4,5,8,9,11,16]. 
 
Definition 2.1.  An fractional power series of the (2+1)-D FDEs in the fractal 2D 
space [9]: 

 

    (2) 
where are the coefficients of the series with function type. 

The next Lemma and Remarkpresent the Taylor's formula in fractal 2D space, the proof of the 
lemma is similar to the proof of Lemma (2.2) in [9]: 

Lemma 2.2. [9] Let has a FPS representation as Eq. (2)  for

.If for , 

then 

 (3) 

Remark 1. [9]By letting inEq.(3), we have the following fractional form of 

Taylor's formula that is related to Eq.(2) 

     (4) 

 
In the case of converting the (2+1)-D FPDEs into the 3D fractal space, we replace the 
coefficients with function type by constant coefficients with the following formula: 

  (5) 

Remark 2.Formulas Eq. (2) and Eq. (5) can be naturally extended to higher dimensional by 
adapting the coefficients. 

3. APPLICATIONS  

Our purpose in this section is to present an analytical closed-form solution in fractal type for 
the considered models that are embedded into fractal 2D and 3D spaces. The solutions are found 
by using a parallel structure to the power series method with utilizing the previous 
representations (2), (5), and there extensions. 
 
3.1.Solution of  Schrödinger mode in fractal 2D space 
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Example 3.1.1. Consider the following (2+1)-D schrödinger initial value problem into the 2D 
fractal space [12]: 

 (6) 

Subject to the initial condition 
 

 (7) 

where is the fractional generalization of the function  

By substituting all the relevant quantitiesEq. (3) into Eq. (6)  and Eq. (7), and equating the 
coefficients of like monomials from both sides, we get the following recursive equation: 
 

 (8) 

 

with initial coefficients 

         (9) 

By solving the equation Eq. (8) recursively we get the following general coefficients: 

        (10) 

So, the exact solution of the equation Eq. (6) is given with the following series solution form  

 

                  (11) 

 

In particular, as the fractional derivative ordering  the solutionEq. (11) becomes 

which is the exact solution for the projection of  Eq. (6) and 

Eq. (7) into the integer space. 

   
3.2.Solution of  Schrödinger model in fractal 3D space 
 
Example 3.2.1. Consider the following (2+1)-D schrödinger initial value problem into the 3D 
fractal space: 
 

 (12) 
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Subject to the initial condition
 

     (13) 

By substituting all the relevant quantities Eq. (5) into Eq. (12)  and (31), and equating the 
coefficients of like monomials from both sides, we get the following recursive equation: 
 

(14)  

with initial coefficients 

     (15) 

By solving the equation Eq. (13) recursively we get the following general coefficients: 

     (16) 

So, the exact solution of the equation Eq. (12) is given with the following series solution form 

 

 

    (17) 

In particular, as the fractional derivative ordering  the same fractal solutionEq. (12) is 

obtained, as , the solutionEq. (16) becomes 

which is the exact solution for the projection of  Eq. (12) and Eq. (13) into the integer space. 

CONCLUSION  

In this work, we present an analytical fractional solution of Schrödinger, Telegraph, and Heat-
like models in higher dimensional fractal spaces. The solutions that obtained from the 3D 
hybrid Taylor series method show a high agreement with that obtained from the 2D hybrid 
Taylor series method as letting . Also by projecting the solutions that obtained from the 

FPS  into the integer space, we perceive that the exact solutions of the integer-
version of the proposed models are obtained. 
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ABSTRACT  

A full characterization of when Tk with k = 2, 3, 4, is a divisor graph, was given by AbuHijleh 
et.al.. Moreover, same authors gave a characterization of Tk, when it is not a divisor graph, for 
any positive integer . In this paper, we give a full characterization of Tk, when it is a divisor 
graph with positive integer k greater than four.  

Keywords: Tree; divisor graph; power of a graph. 

1. INTRODUCTION 

Throughout this paper a graph G means a finite simple graph, i.e. a graph without loops or 
multiple edges. A tree T is a connected graph that has no cycles. The distance between any two 
vertices x and y, is the length of a shortest path between them, denoted by d(x, y). In a tree T, 
the path between two vertices is unique, hence the distance between two vertices is the number 
of edges in this path. An r-starlike tree T is represented by subdividing all edges of a star graph 
into paths (known by legs), where r is the number of legs. The diameter of a graph G, denoted 
by d or diam(G), is equal to sup{d(x, y): x, y  V(G)}. The neighbour of a vertex u, denoted by 
N(u), is the set of all vertices that are adjacent to u, then |N(u)| = deg(u). A leaf vertex (end 
vertex), is a vertex u for which deg(u)= 1. The power graph Gk has the vertex set V(G) and two 
vertices x and y are adjacent if and only if . For an oriented digraph D, a transmitter 
is a vertex having indegree 0, a receiver is a vertex having outdegree 0, while a vertex v is a 
transitive vertex if it has both positive outdegree and positive indegree such that (u,w) E(D) 
whenever (u,v) and (v,w) E(D). Whereas, if every vertex in a graph G is a transmitter, a 
receiver, or a transitive vertex, then D is a divisor orientation of G and G is a divisor graph. For 
an example, a complete graph and a bipartite graph (a tree is bipartite), see [6]. For undefined 
notions and terminology, the reader is referred to [4]. 

g(n), of a longest path in the 
divisor graph whose divisor labeling has range . Since 1983, several papers appear 
about divisor graphs, such as [ ] and [ ]. A complete characterization of a divisor graph of 
powers of paths, cycles, hypercubes, folded hypercubes and caterpillars, beside T2, were given 
in [1], [2] and [5]. Moreover, in 2015 AbuHijleh et. al. [3] gave a characterization of Tk, when 
it is not a divisor graph for any positive integer , beside T3 and T4, if they were a divisor 
graph. In this paper, we give a characterization of Tk, when it is a divisor graph for any positive 
integer k greater than four. 
In the graph theory a divisor graphs also where studied under different names such as a 
comparability graph, a transitively orientable graph, a partially orderable graph, and a 
containment graph. Note that, every comparability graph is a perfect graph. A perfect graph is 
a graph in which the chromatic number of every induced subgraph is equal to size of largest 
clique of that subgraph. Whereas, perfect graphs are closely related to perfect channels in 
communication theory. Also, a novel application of a perfect graph relates to an urban science 
problem involving optimal routing of garbage trucks, see [9], and there are a lot of applications 
one can find it, especially for a power graph that have a main aspect in networking field. 

                                                           
1Eman A. AbuHijleh. 
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2. PRELIMINARIES 

The following results give different characterizations of divisor graphs. 
 
Theorem 2.1. Let G be a graph, then G is a divisor graph if and only if G has a divisor 
orientation, see [6]. 
 
Proposition 2.2. Every induced subgraph of a divisor graph is a divisor graph, see [6]. 
 
Theorem 2.3. For any int   then Gk is not a 
divisor graph, see [5]. 
 

Theorem 2.4.  2(l  

T contains an induced subgraph that is isomorphic to Tk,l , see Figure 1. Then Tk is not a divisor 
graph, see [3]. 
 

                                         
 

Figure 1: Tk,l. 

 

Theorem 2.5. Let T be a tree that is induced a 3-starlike tree Te with length of each leg is 

, where diam(Te) = de  is not a divisor graph, see [1] and [3]. 
 

                                         
 

Figure 2:Te. 
 

According to Theorem 2.4, we have a specific form of T so that T is not induced an isomorphic 
subgraph of Tk,l with odd positive integer k. The following definition gives a construction of an 
arbitrary tree T, so that Tk,l is not induced in it. 
 
Definition 2.6. First, construct a path, say Pd, with diam(Pd) = diam(T). Then label the 
consecutive vertices, after leaving h+1 vertices of Pd from one side, as follows {x1, x2 m: 

m = d  2h  1, h = }. Hence, there were h + 1 vertices in Pd after xm, in the other side. 

Second, construct subtrees on each interior vertex, without changes the diameter of T, and 
with a specific distance of x , where each vertex has a specific name as given below. 

Third, for each x , consider the set of vertices Si = {xi, vi = : d(xi, vi) = hi ,  m 

and lj= 1  of vertices in the level hi}. For any path P between vi and xj s.t. , then 
xi P. Moreover, at i = 1, m we have hi . At i = 2, m 1 we have hi =1, 1 and 
continuing by this manner, to reach to the middle. Also, define the sets, in the level h+1 of x1 

to be, S1,i = { = : d(x1, ) = h + 1 and lj =1,  of leaves in the level h +1, 

whereas for each 1) 1, the path Pi from , ji lv to x1 passes through }. Similarly 

define the sets, in the level h +1 of xm to be Sm,i, where m) 1. 
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Fourth, if d = 2k + 1, we find that Sh+1= {xh+1} and Sh+2= {xh+2}. At d = 2k or less, we delete
the set of vertices  and adjacent with . Then rename the vertices in  to be

, and similarly the successive sets till Sm, see examples in Figure 3 and Figure 4. 

 

 
 

Figure 3: T with d = 2k+1. 
 

                  
 

Figure 4: T with d = 2k-2. 
 
Similarly, by using Theorem 2.3 and Theorem 2.4, we have a specific form of T, so that T is 
not induced an isomorphic subgraph of Tk,l or Te with even positive integer k. 

3. CHARACTERIZING WHEN POWERS OF A TREE TK ARE DIVISOR 
GRAPHS, FOR k  2. 

For k = 3, T3 was characterized by AbuHijleh et. al. [3]. But if with odd positive integer 
k, we give a characterization in the following theorem, which is a generalization of result at k 
= 3. 
 
Theorem 3.1.   k is 
a divisor graph if and only if T is not induced a subgraph that is isomorphic to Tk,l. 
 
Proof.  Assume that T is induced a subgraph that is isomorphic to Tk,l. Then, by Theorem 2.4, 
Tk is not a divisor graph. 

Conversely, assume that T with diam(T) , is not induced a subgraph that is 
isomorphic to Tk,l, where . Then T will take a certain form, that is given in Definition 
2.6. Otherwise, if you add an edge to any leaf (without changes the diameter), you will get an 
induced subgraph that is isomorphic to Tk,l, see Figure 3 and Figure 4 as an examples. 

Moreover, by using sets in Definition 2.6, there are three cases to consider w. r. to diameter 
of T. 
Case 1:  For 2k  . 

  with j = deg(x1)  1. 

  with j = deg(xm)  1. 
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Note that: (a.) Let xr = xh+1. (b.) Let xt = xh+2. (c.) At d = 2k  2 and k = 5, we have xh+1 = xm, 
so let xt = . 
 
Case 2:  For 2k   3. 

 , where  with j = deg(x1)  1, and 

 {u: d(u,v) > k with v  S  }. 

  , where  and 

, with  j = deg(xm)  1. 

 
Note that: (a.) Let xr = xh+1. (b.) Let xt = xh+2, for 2k  3. (c.) At d = 2k  h, we 
have xh+1 = xm, so let xt = . (d.) For k = 7, we have only one case is d = 2k  h = 2k  3, 
hence consider case (c.) for it. (e.) For k = 5, we have d = 2k  h = 2k  2 and that's in case 1. 

 
Case 3:  For k  h  1. 

 , where  with j = deg(x1)  1, and 

 ({u: d(u,v) > k with v  S  } ). 

  , where ( ) and , with j 

= deg(xm)  1. 

Note that, in this case . Hence xr =  and xt = , where xt N(xr ) and d(xr, v) = 

k with v  S . 
 
Let D be an orientation of Tk, where E(D) = A B C and A, B, & C are defined as follows: 
(1) For A  E(D): 

(i) For u  SA, then (u, xr )  A  E(D). 
(ii) For u, v  SA and d(xr, u) > d(xr, v), then (u, v )  A  E(D). 

(iii) For u, v  SA, d(xr, u) = d(xr, v) and . Let (u, v)  A  E(D). 
(iv) For u, v  SA and d( u,v) = k +1, then u and v , where i1 2. Then uv  

E(Tk) and for any z  SA different than u and v, we have two cases: 
If  and . Hence, d(xr, z) < d(xr, u) and d(xr, z) < d(xr, v), then{(u, 
z), (v,z)}  A  E(D). 
 If  and d(v, z) = k+1. Hence, u, z and v , where i1 2. Then (u, 

z )  A  E(D) and zv  E(Tk ). 
(2) For B  E(D): 

(i) For v  SB, then ( xt , v)  B  E(D). 
(ii) For u, v  SB and d( , u) < d( , v), then (u, v )  B  E(D). 
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(iii) For u, v SB, d( , u) = d( , v) and d( . Let (u, v ) B E(D).

(iv) For u, v  SB and d(u, v) = k + 1, then u and v , where i1 2. Then uv

E(Tk ) and for any z  SB different than u and v, we have two cases: 
a. If  and . Hence  d( ,z) < d( ,u) and d( , z ) < d(

,v), then  {(z, u), (z,v)} B E(D). 
b. If  and d( v, z) = k+1. Hence u, z and v , where i1 2. Then 

(u, z)  B  E(D) and zv  E(Tk). 
(3) For C  E(D): 

(i) (xt , xr )  C  E(D). 
(ii) For u  SB and  d(xr , then (u, xr )  C  E(D). 

(iii) For u  SA and d(xt , then (xt, u)  C  E(D). 
(iv) For u  SA,  v  SB and , then (v, u )  C  E(D). 

 
It is enough to show that every vertex of D is a transmitter, a receiver, or a transitive vertex. 
(1) For diam(T) = 2k + 1, we have xr is a receiver. Also we have a set of receivers, say Sr, 

where for each Sm,I with deg(xm) 1, Sm,I is induced a clique in Tk and we have 
only one receiver in each set of Sm,i, hence |Sr| = deg(xm)  1. But for diam(T) , we have 
only one receiver is xr and Sr = . 

(2) For a transmitter vertex we have xt. Also we have a set of transmitter, say St, where for 
each S1,I with  deg(x1) 1, S1,I is induces a clique in Tk and we have only one 
transmitter in each set of S1,i, hence |St | = deg(x1)  1. 

(3) For a transitive vertex, we have three cases to consider: 
(i) Let u, v, z SA  St and {(u, v), (v, z)} A E(D). Then d(u, xr r r), 

which implies that  and (u, z)  A  E(D). 
(ii) Let u, v, z SB  Sr and {(u, v), (v, z)} B  E(D). Then d(u, 

d(z, ), which implies that  and (u, z)  B  E(D). 

(iii) Let u, v SA  St and w, z SB  Sr: 
 If (z, u)  C  E(D) and (u, v)  A  E(D), then d( u, xr r). Which implies 

, hence (z, v)  C  E(D). 
 If (z, w)  B  E(D) and (w, u)  C  E(D), then d( z, ). Which 

implies , hence (z, u)  C  E(D). 
 

 
 
 
 

Figure 7: The sketch of the direction in D. 
 

The sketch of the direction in D is represented in Figure 7. Thus, D is a divisor orientation 
of Tk. Hence by Theorem 2.1, Tk is a divisor graph for . For T with 
diam , Tk is an induced subgraph of Tk with diam(T) = k+2. So that, by above work 
and Proposition 2.2, Tk is a divisor graph.  
 
For k = 2, 4, Tk was characterized by AbuHijleh et. al. in [1] and [3], respectively. But if  
with even positive integer k, then the following theorem characterizes it, where it is a 
generalization of result at k = 2, 4. 
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Theorem 3.2. k is a 
divisor graph if and only if T has no induced subgraph that is isomorphic to Tk,l or a subgraph 
that is isomorphic to Te. 
 
Note that, the proof of Theorem 3.2 is like one in Theorem 3.1 with minor differences. Finally, 
by Theorem 3.1, Theorem 3.2 and results in AbuHijleh [1] and [3], we give a full 
characterization, for when Tk .  
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