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FOREWORD

Aliaa Burqan
Conference Chairman
Zarqa University

I am happy to introduce to you the 6th International Arab Conference on Mathematics
and Computations, IACMC 2019. This conference is among a series of international
conferences held and sponsored by Zarqa University. The purpose of all IACMC’s is
to bring together researchers and professionals in all fields of Mathematical Sciences to
meet, discuss, to share and explore ideas that improve their research. On the other hand,
these conferences will also provide a good opportunity to encourage young researchers,
students and all those who are desirous of working in the field of Mathematics to in
tract with each other and to explore possibilities for future collaborative work.

This book contains the short papers of IACMC 2019 which is held in Zarqa University
on April 24-26, 2019. This sixth edition contains a large number of research topics and
applications in both pure and applied mathematics in addition to the field of statistics
which are the topics included in the scope of IACMC'’s. Furthermore, the program is
enriched by several keynote lectures delivered by well-known experts in their areas of
Mathematics.

TACMC 2019 received 120 abstract submissions from 20 countries. The accepted full-
papers went through an evaluation method: each paper was reviewed by two reviewers
from the IACMC Scientific Committee; one of them is an international known expert.
Authors of some selected papers, based on the reviewer's evaluations and on the oral
presentations, are invited to submit extended versions of their papers for a book which
will be published by Springer.

The program for this conference required the dedicated effort of many people. Firstly,
we must thank the sponsors of IACMC 2019: Zarqa University and The Scientific
Research Support Fund. Secondly, we thank the invited speakers for their invaluable
contributions and the authors, whose research efforts are herewith recorded. We also
give our thanks to the reviewers for their diligent and professional reviewing. Last but
not least, a special word of thanks is due to those who spent much of their time to make
the success of this conference: to all members of the Local and Organizing Committees
for their super job.

We look forward to welcoming and sharing this conference with you. Wishing you all
an exciting conference and an unforgettable stay in Jordan and hoping to meet you again
for the 7th IACMC.
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NEW TYPE CONTRACTIVE CONDITIONS FOR KANNAN AND
CHATTERJEA FIXED POINT THEOREMS IN B- METRIC SPACES

Taieb Hamaizia

Department of Mathematics and Informatics, Faculty of Sciences, Larbi Ben M hidi University,
Oum Elbouaghi, Algeria

E-mail:  tayeb042000@yahoo.fr

ABSTRACT

Centrale to the entire discipline of mathematics is the concept of space that has heatedly received
considerable attention in the last few decades. B-metric spaces, in particular is a major area of
interesting within types of spaces. In essence, the present study seeks at extreme the one
proceding a clear insight of the concept b metric and establishing its main structure. At the other
extreme, it attempts to introduce a new class principle contraction to prove kannan and
chatterjea fixed point theorems. We also give in the end of paper some examples to illustrate
the given results

Keywords: B-metric space; Fixed point; Cauchy sequence.

1.INTRODUCTION

The metric spaces are the well known space and very important tool for all branches of
mathematics. The first important result in the theory of fixed point about contractive mapping
is Banach theorem.
A mapping T : X—.X, where (X,d) is a metric space, wich is a contraction if there exists k in
[0,1) such that for all x,y in X,

d(f0).f) <d(x.).
Additionally, there are numerous generalization of usual metric spaces. We refer the readers
to [1],/6],/8,9,10]. One of them is b-metric space, b-metric spaces are one of the among
spaces which generalize the classical metric.Czerwik [8] is the first presented a generalization
of banach fixed point theorem in b-metric spaces.
This recherches introduced some classes of contractive principle and proved some theorems
in b-metric spaces by imposing some additional conditions.
In the present paper, we extend and prove the Kannan’s and Chatterjea’s theorem in b-metric
spaces with new contractive principle. At the end of paper, we introduce an example to
illustrate our results.

2. PRELIMINARIES

B-metric spaces could be defined by disparate scholars as follow :

Definition 2.1. /2] Let X be a nonempty set and d: X xX — [0,+o0). A function d is called a
b-metric with constant s > / if
b(0) d(x, y) = 0if and only if x = y;
b(l) dx, y) =d(y, x) forall x, y €X;
b(2) dix, y) <s[d(x, z) + d(z, y)], forallx,y, z € X.
In this case, the pair (X, d) is called a b-metric space.

Obviously, a b-metric space with base s = / is a metric space. Moreover, we can consider
every metric space as a b-metric space but contrary is not necessary true. A well-known
example of h-metric spaces are given below



Example 2.2 /4] Let X ={0,1, 2} and d(0,2) = d(2, 0) = m>2,
d0,1) =d(, 2) =d(1,0)=d(2,1)=1,
and d(0, 0) = d(1, 1) =d(2, 2) = 0. Then d(x,y) <(m/2)(d(x,z)+d(z,y)) for all x,y,z in X

Definition 2.3./3/ Let {x,} be a sequence in a b-metric space (X, d).

(1) A sequence {x,} is called convergent if and only if there is x € X such that d(x,, x) — 0
when n — +oo,

(2) {x,} is a Cauchy sequence if and only if d(x,, x,,) — 0, when n,m — +oo.

Definition 2.4./3] The b-metric space is complete if every Cauchy sequence convergent.

Lemma 2.5. Let {x,} be a sequence in a b-metric type space (X,d) such that
d(Xn,Xn+1) Ad(Xn,Xn-1),
for some 4,0<A<1/s, and each n=1,2,.... Then {x,/} is a Cauchy sequence in (X,d).

3. MAIN RESULT

Throughout this section, we afford two fixed point theorems in b-metric spaces. The first one theorem
is about Kannan’s contraction and the second one is about Chatterjea contraction in b-metric spaces.

Theorem 3.1. Let (X, d) be a complete b-metric space with constant s > 7.
If a>0, b> 0, (2a+b)<I and

d(Tx,Ty) < a(d(x,Tx) + d(v,Ty)) + bd(x,y) (1)
for all x, y in X, then there is a unique fixed point on T

Proof. Let x in X and x be a sequence in X defined as following
Ixy=xu+1, n=01,2...
By using (1),
d(xnxn+1) S a(d@nxni) + d(xn-1,%n)) + bd(xn, Xn-1)
< ad(xnxn+1) ta d(xp-1,x,) + bd(xn, Xn-1).

we get

d(Xn,xn+1) < (a+b)/(1-a) d(x-1,%n).
By repeating this procedure, we get

d(xnxn+1) < [(at+b)/(1-a)]" d(x1,x0).
Using (a+b/1-a)<I, we get, T is a contraction mapping.

Now, we show that {x,} is a Cauchy sequence in X. Let m, n > 0 with m > n,
d(Xn,xm) < "d(x1,x0)
foreachn =0,1,2,3,... , and
0<c=(a+b/l-a) <1
Then the sequence {x,/} is a Cauchy sequence in X. In view of completeness of X; we consider
that {x,} convergent to x* in X.

4. UNIQUENESS OF FIXED POINT:

Finally, we have to show that the fixed point is unique. Assume that is another fixed point of
T x'= x". This case is a contradiction with condition (1). So the fixed point is unique. This
completes the proof []

Our next theorem about Chatterjea type fixed point theorem in b-metric spaces with new

2



contractive condition.

Theorem 3.2. Let (X, d) be a complete b-metric space with constant s > 1.
If a>0, b> 0, 2sa+b<I and

d(Tx,Ty) L a(d(y,Tx) + d(x,Ty)) + bd(x,y) (2)
for all x, yin X, then there is a unique fixed point on §

Proof. Let x in X and {x,! be a sequence in X defined as following
Ixn=xn+1, n=0,1,2...
By using (2),
d(xnxn+1) S a(d(xn-1,5%,) + d(xn,Sxn-1)) + bd(xn, Xn-1)
<ad(Xn-1,Xn+1) + bd(Xn, Xn.1)
<asd(Xp-1,Xn) + asd(Xn+1,%,) + bd(Xn, Xn-1),

This implies that

d(xXnxn+1) <(as+b)/(1-sa) d(xn-1,xn).
So

d(xnxn+1) <[(as+b)/(1-sa)]" d(x1,xq).
By condition 2sa+b<1. Thus T is a contraction mapping.

Now, we show that {x,} is a Cauchy sequence in X. Let m, n > 0 with m > n,
d(nxm) <F'd(x1,x0)
foreachn =0,1,2,3,... , and
0<r=(as+b/1-as)<I
Then the sequence {x, } is a Cauchy sequence in X by completeness of X; we consider that
{x.} convergent to x* in X.
5. UNIQUENESS OF FIXED POINT:

The proof of uniqueness is similar to the proof of uniqueness in theorem 3.1.0J

Remarks 3.3 If we take s= I, b=0 and S=f,Theorem 3.1 reduce to Kannan theorem /7/ and
if we take s= 1, b=0 and S=f, Theorem 3.2 would be the Chatterjea theorem /5/.

Example 3.4 Let X={0,1,2} and d-X. X— [0, +oo/ be defined as follows:
d(0,0)=d(1,1)=d(2,2)=0, d(0,1)=d(1,0)=d(0,2)=d(2,0)=2/7, d(1,2)=d(2,1)=5/7. It is easy to
check that (X d) is a b-metric space with s=4/3 and it is not a metric space (usual).

Define T:X—Xby T0=0, T1=2, T2=0. If we take a=1/5 and b=1/2 in theorem 3.1, thus the
inequality (/) holds for all x,y in X.

ACKNOWLEDGEMENT
The Author would like to thank Zarqa university and the (IACMC2019) organizing
committee for finding this study and he would like to escpress sincere thanks.

REFERENCES

[1] Aydi, H., Bota MF., Karapnar, E., Mitrovic, S.: A fixed point theorem for set-valued quasi-

contractions in b-metric spaces. Fixed Point Theory and Applications 2012 2012:88.

[2] I.A.Bakhtin, The contraction mapping principle in almost metric spaces, Funct Anal., 30,Unianowsk, Gos. Ped.
Inst., (1989), 26-37.

[3] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces,



Int. J. Mod. Math., 4 (2009), 285-301.

[4] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metric, studia, univ
Babes, Bolya: Math, Liv(3) (2009), 1-14.

[5] Chatterjea SK. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972;25(6):727-730.

[6] T Hamaizia, PP Murthy, Common Fixed Point Theorems in Relatively Intuitionistic Fuzzy Metric Spaces, Gazi
University Journal of Science 30 (1), 355-362

[7] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968) 71-76..

[8] Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric spaces, AttiSem Math Fis

Univ Modena. 46(2), 263-276 (1998)

[9] M. Kir and H. Kiziltunc,On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish Journal of
Analysis and Number Theory, 2013, Vol. 1, No. 1, 13-16

[10] Shatanawi W, Al-Rawashdeh A, Aydi H, Nashine HK. On a fixed point for generalizaed contractions

in generalized metric spaces. Abstract and Applied Analysis; 2012. Article ID 246085: 1-13.



COMPARING THE EFFICIENCY OF DIFFERENT STARTIFIED
SAMPLING METHODS FOR ESTIMATING THE POPULATION MEAN

MAHMOUD I. SYAM

Department of Mathematics, Foundation Program, Qatar University, Doha, P.O. Box (2713),Qatar
E-mail:  M.syam@qu.edu.qa

ABSTRACT

Many methods related to stratified ranked set sampling are suggested for estimating the
population mean. Some of these methods are stratified quartile ranked set sample (SQRSS),
stratified percentile ranked set sample (SPRSS), stratified median ranked set sample (SMRSS)
and stratified extreme ranked set sample (SERSS). These estimators are compared to stratified
simple random sample (SSRS) and stratified ranked set sample (SRSS). It is found that all
estimators are unbiased estimators of the population mean and they are more efficient than their
counterparts using SSRS and SRSS. A simulation study is considered to compare the efficiency
of the above estimators.

Keywords: Ranked set sampling;Stratified;Quartile;Median; Percentile; Extreme; Efficiency.

1.INTRODUCTION

Mclntyre (1952), considered the mean of n units based on a ranked set sampling (RSS) to
estimate the population mean. Takahasi and Wakimoto (1968) provided the mathematical
theory for RSS. Dell and Clutter (1972) showed that the mean of the RSS is an unbiased
estimator of the population mean, whether or not there are errors in ranking. Muttlak (1997)
suggested median ranked set sampling (MRSS) to estimate the population mean. Muttlak
(2003) considered quartile ranked set sampling (QRSS) to estimate the population mean,he
showed that QRSS reduces the errors in ranking when compared to RSS. Muttlak (2003b)
suggested percentile ranked set sampling (PRSS) to estimate the population mean and he
showed using PRSS procedure will reduce the errors in ranking comparing to RSS since we
only select and measure the pth or the gth percentile of the sample. K. Ibrahim, Al-Omari and
Syam (2010) estimated the population mean using SMRSS, then in (2012) they estimated the
population mean using SQRSS and SERSS.

The aim of this paper is to compare some suggested estimators for the population mean as
stratified quartile ranked set sample (SQRSS), stratified percentile ranked set sample (SPRSS),
stratified median ranked set sample (SMRSS) and stratified extreme ranked set sample
(SERSS). These estimators are more efficient than those obtained based on stratified simple
random sample (SSRS) and stratified ranked set sampling (SRSS).

2. SAMPLING METHODS

2.1. Ranked set sampling

MclIntyre (1952) first suggested the ranked set sampling (RSS) method. The RSS involves
selection of n random samples of size n units each from the population and ranking of the units
in each sample with respect to the variable of interest. An actual measurement is taken for the
unit with the smallest rank from the first sample. From the second sample, an actual
measurement is taken for the unit with the second smallest rank, and the procedure is continued
until the unit with the largest rank from the nth sample is chosen for actual measurement.

2.2. MEDIAN RANKED SET SAMPLING

The MRSS procedure as proposed by Muttlak (1997) depends on selecting n random samples
of size n units from the population and ranking the units within each sample with respect to a

5



variable of interest. If the sample size 7 is odd then from each sample select for the measurement

n+1
the (%jth smallest rank, which means the median of the sample. If the sample size # is

n n
even then select for the measurement from the first > samples the (Ejth smallest rank and

from the second g samples the (§+1)th smallest rank.

2.3. Percentile and quartile ranked set sampling

The PRSS procedure proposed by Muttlak (2003b) depend on selecting n random samples each
of size n units from the population and rank each sample with respect to a variable of interest.
If the sample size #n is even, then select for measurement from the first n/2 samples the

p(n+1) th smallest ranked unit and from the second n/2 samples the g(n+1) th smallest
ranked unit where 0<p<1 andp+g=1 . If the sample size n is odd, then select for
measurement from the first (n—1)/2 samples the p(n+1) th smallest ranked unit and from
the last (n—1) /2 samples the g(n+1) th smallest ranked unit, and the median from the middle
sample. Quartile ranked set sampling is similar to percentile ranked set sampling but instead of
P(n+1) we select q1 and instead of g(n+1) we select q3.

2.4. Extreme ranked set sampling

The ERSS procedure depend on selecting n random samples each of size m units from the
population and rank each sample with respect to a variable of interest. If the number of samples

. n .
n is even, then select for measurement from the first > samples the smallest rank unit
. n . .
(minimum) and from the second — samples the largest rank unit (maximum). If the number of
2
. n-1
the samples 7 is odd, then select for measurement from the first TN samples the smallest rank

. - n-1 . .
unit (minimum) and from the last TN samples the largest rank unit (maximum), and the

median from the middle sample.

1.5. Stratified sampling

In stratified sampling the population of N units is first divided into L subpopulations, which
are consist of, say, N,,N,,---,N, units. The subpopulations are called strata. To obtain the full

benefit from stratification, the size of the h™ subpopulation, denoted as N, whereh=1,2,...,.L

, must be known. Once the strata have been determined, samples are drawn independently from
the respective strata, producing sample sizes denoted by n,,n,,...,n, , and the total sample size

L
isn :Znh . If a simple random sample is taken from each stratum, the whole procedure is
h=1

described as stratified simple random sampling (SSRS).
If the ranked set sampling is conducted for each stratum, the whole procedure may be called as
stratified ranked set sampling (SRSS). Same for SQRSS, SMRSS, SPRSS and SERSS.

Example 1:



Suppose we have two strata, i.e., L=2 andh=1,2 . Assume that from the first stratum, we
draw six samples, each of size 6, and from the second stratum, we draw eight samples each of
size 8 as the following:

Stratum 1: Six samples are obtained and ranked as follows:

X11(1) , X11(2) ’ X11(3) , X11(4) ’ X11(5) ’ X11(6) X21(1) ’ X21(z) ’ X21(3) , X21(4) ’ X21(5) ’ X21(6)

X31(1)IX X31(3)IX X31(5)'X31(6) X41(1)fX41(z)IX41(3)fX41(4)'X41(5)fX41(s)
X X X X

X51(1)I 51(2),X51(3), 51(4) 7 /¥ 51(5) 7 7 51(6) XGl(l)’XGI(Z)'X

For the first stratum, h=1,
The chosen elements using SQRSS are: X, ), X510, X310 Xaas)r X115 Xeaes)

31(2)” 31(4)7

61(3)” X61(4) ’ XGl(S) ’ X61(6)

The chosen elements using SMRSS are: X, ), X513, Xa103) Xar1a) 1 Xs10a) » Xoaa)

The chosen elements using SPRSS are (Assuming p=40% and q=60%)
X X X X X X

11(2) 7V 21(2) » 7 31(2) 7 M a1(a) 2 2V 51(4) 7 N 61(4)

The chosen elements using SERSS are: X11(1), X211y, X31(1), X41(6), X51(6) X61(6)
Same procedure in stratum 2 witheight samples, each of eight units:

Therefore, SQRSS units consist of

X11(2)IX21(2)IX31(2)' X41(5)’X51(5)'X61(5) > X12(2) > Xzz(z) s X3z(2) s X42(2) > st(s) s st(e) s X72(6) st(s) .
SMRSS units consist of
X X X X X

11(3) 7 “*21(3) 7 7*31(3) ? 7t 41(4) 7
SPRSS units consist of,
X110 Xo10010 Xa10010 X,

11(2) 7 7 21(2) 7 ¥ 31(2) 2 M 41(4)

In addition, SERSS ConSiSt Of Xll(l)l X21(1), X31(1), X41(6)' X51(6)' X61(6)’

X

61(4)”

X

12(4)

X

22(4)”

51(4)” X32(4) ’ X42(4) ’ XSZ(S) ’ XGZ(S) ’ X72(5) ’ X82(5)

X

51(4) 7

X

61(4) »

X

12(3) »

X

22(3) >

X32(3) 4 X42(3) s XSZ(S) 4 X62(5) s X72(5) X82(5)'

X12(1) X22(1) X32(1) Xa2(1), X52(8) X62(8) X72(8), X82(8)

3. ESTIMATION OF THE POPULATION MEAN

In the case of stratified quartile ranked set sampling (SQRSS), the estimator of the
population meanwhen n, is even and odd are defined as in (1) and (2)

_ L
qurssl Z Z )(;h(ql(n,1 +1)) + Z X ih(gs(n,+1)) (1)
=1 i= i

N . . . .
Where W, =Wh , N, is the stratum size and N is the total population size.

n,—1
— LW hZ 1y
— h
XW’“Z_Z_ inh(ql(nh+1>)+ Z th(q3(nh+1))+X(nh+1)h(nh+1) ’ 2)
h=1 N, | =1 _ny+3

2

The variances of SQRSS1 and SQRSS2are given by

”h

L
Z zo-h(lql)+ Z O-h(lq) andz Z:O-h(fq1 + Z o-h(fqg n,,+1 ( )

h=1 n i nh+ i n,,+

In the case of stratified medlan ranked set sampling (SMRSS), the estimator of the population
meanwhen n, is odd and even are given by



— L w. Ny L w
_ h h
X smrss —Z (zxm (nh+1)/2)} X smirss2 —z leh(nh/z) + z th((n,,+2)/2) “4)
h

h=1 i=1 h =
The variance of SMRSS1 and SMRSS2are given by
Var(X svrss1) —im”z B ,Var(X surss2) i W, iaz + nzh o’ (5)
7 n,  hEE) e O S B S

In the case of stratified percentile ranked set sampling (SPRSS), the estimator of the
population meanwhen n, is even and oddare defined as

Il
Mh

E
L

Ksprss1 Xintoto, 110 Z Xiniatoy 1) | -

I——+l
2

>
I
-
S
>
I
=N

ZL W s Z
h
XsprssZ - X/h(p(nh+1) + X in(q(n, +1)) +X (”h"'l (6)

h=1 N | =1 ; n,,2 1, 5

The variance of SPRSS1 and SPRSS2are given by

L 2
- W,
Var(Xsprssl) = z_g Z O-h(( :p) + Z O-h(l q) | 2
h=1 Ny
l——+1
2
n,—1
_ L 21 2 i
3% 2 2 :
Var(Xsprss2) = z_z Z Ohiip) T Z Ohiq) T Ohliigy) (7
h=1 nh i=1 2m=1 1_'_2

In the case of stratified extreme ranked set sampling (SERSS), the estimator of the
population meanwhen n, is even and oddare defined as

ny nh—l
X serss1 = zxm(1)+ z Xm(m) > XSERSS = thr(1)+ z Xhl(m) ( )
h=1 N i=1 h=1 N i=1 . n,,+3

1=

The Variance of SERSS1 and SERSS2are given by

nh—l
L L
z Zo'h,u)"" z O-hl(m) ) Z Zo'mu)"' Z O-hl(m) n,,+1 mi |(9)
h=1 n h=1 i=1 i "h+ 5 2 )

Lemma 3.1. [fthe distribution is symmetric about pi, then

(a) Xsarss is an unbiased estimator of the population mean.
(b) Xswiss is an unbiased estimator of the population mean.

(C);E.ess_ is an unbiased estimator of the population mean.
(d)Xsgrss is an unbiased estimator of the population mean.

Lemma 3.2. [fthe distribution is symmetricabout u, then
(a) Vaf(XSQR551 ) < Var(XSSRS ) and Var(XsaRssz ) < Var(XSSRS ) .

(b) Var(}sMRsn ) < Var(}sSRs) and Var(}s/vmssz ) < Var(}ss;es ) .

(c) Var (}SPRSSI ) <Var (}ssres ) and Var(}spRssz ) <Var (}ssns ) .



(d) Var(Xsgrss1) < Var(Xssgs) and Var(Xsgrss2) < Var(Xssgs)

4. SIMULATION STUDY
In this section, a simulation study is conducted to investigate the performance of SQRSS,
SMRSS, SPRSS and SERSS for estimating the population mean. Symmetric and asymmetric

distributions have been considered for samples of sizes n=7,14,18. assuming that the

population is partitioned into two or three strata. The simulation was performed for the SRSS
and SSRS data sets from different distributions symmetric and asymmetric. The symmetric
distributions are uniform and normal, and the asymmetric distributions are geometric and beta.
In case of symmetric distributions, the efficiency of estimator T relative to SSRS and SRSS

respectively is given by

5 o Var(X 5 o Var(X
ef f (R, Kssns) = Gc i and  ef f(Ry, Konss) = Tyl (10)

The values of the relative efficiency found under different distributional assumptions are

provided in Table 1.

Table 1: The efficiency of SQRSS, SMRSS, SPRSS and SERSS relative to SRSS and SSRS for n=7 and
samples sizes n, = 4 andn, = 3

Distribution X sprss X sarss X sprss X sprss X smrss XsERss
20% 30% 40%
Uniform (0,1) )_(SRSS 1.3440 1.4044 2.1044 2.1137 2.1954 1.2032
)_( 1.8680 1.9680 2.0097 2.2431 2.3908 1.7873
SSRS
Normal (0,1) )_(SRSS 1.9521 2.2923 2.3041 2.9172 3.2764 1.8941
)_( 1.2206 1.3206 1.9804 3.3480 3.7571 1.2007
SSRS
Geometric (0.5) )_(SRSS 2.6179 3.1237 3.0745 3.0875 3.1237 2.4573
)_( 2.5990 3.0990 3.0711 3.0725 3.0990 2.3682
SSRS
Beta (5,2) v 1.1394 1.2593 1.9593 2.5636 2.6154 1.1039
X srss
)_( 1.0606 1.3704 2.1604 2.6636 2.8462 1.0074
SSRS

5. RESULTS AND DISCUSSION
(1) The suggested estimators SQRSS, SMRSS, SPRSS and SERSS are more efficient
than SRSS and SSRS based on the same number of measured units.

(2) When the performance of the suggested estimators are compared, the efficiency of the
suggested estimators is found to be more superior when the underlying distributions
are symmetric as compared to asymmetric.

(3) The relative efficiency of SQRSS, SMRSS, SPRSS and SERSS estimators to those
estimators based on SSRS and SSRS are increasing as the sample size increases.

(4) The relative efficiency of SQRSS, SMRSS, SPRSS and SERSS estimators to those

estimators based on SRSS and SSRS are increasing as the percentile increases.
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ABSTRACT

In this work, we studied mathematically the two-dimensional free surface problem of a jet of inviscid
and incompressible fluid into a semi-infinite tube. The flow is considered to be irrotational. Where we
take in the consideration the surface tension effect, the problem becomes very difficult because of the
nonlinear condition on the free surface of the flow domain.This problem is also known as free boundary
problems whose his mathematical formulation involves surfaces that have to be found as part of the
solution. By using the integro-differential equation method, we solved numerically this problem for
different values of the Weber number, and some typical profiles of the free surface of the jet are illustrated

Keywords: Integral equation ; Free-surface; Inviscid flow; Weber number.

1. THE INTRODUCTION

In this paper the problem of flow of a jet in a semi infinite tube is considered (See figure 1).
The flow is steady irrotational, the flow is considered to be incompressible, inviscid and the
effect of gravity is neglected, but we take in consideration the surface tension effect. The
mathematical problem is defined by the number of Weber. When the effect of the surface
tension is neglected, we can determine the exact solution by using the free streamline theory
based on the conformal mapping theory[3]. In this case and when the effect of surface tension
is considered, The problem becomes very difficult to solve analytically because of the
nonlinear condition given by the Bernoulli equation on the free surface. which obliges us to use
numerical techniques and methods that depend on conformal transformations to solve it. we
use the integro-differential equation method and the Cauchy theorem. the main advantage of
this method is to transform two-dimensional problems into unidimensional problems. To solve
free surface problems, this method has been adopted by many previous authors ( [1], [4], [5],
[6], [7] ). We were able to calculate the solution for different values of the Weber number and
channel width. The results found confirm those found in [1].

2. MATHEMATICAL FORMULATION

The irrational flow along a semi-infinite rectangular channel is assumed. The fluid is
inviscised and incompressible (see Figure 1)
The mathematical problem is to find the function ¢verified the following equation:

A¢ = Oin the flow field, (1)
Where ¢ is the velocity potential

% = Oin the walls 4B, CD  (2)
% = Oin the wall BC 3)
1(09\%2 | 1(0p\°> T
5 (ﬁ) + > (ﬁ) — ;K = (Cts, on the free surface. 4
In this case p is the density, T is the surface tension, and K is the curvature of the free surface
¢) — Ux X — — (5)

in which U the speed unit.

*Correspondingauthor
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Figure 1: Sketch of the flow and the coordinates

In this way, the complex velocity W and the complex potential function f can be defined as:
f=¢+iy,
d

W=—=u-iv
dz
Where u and v represent the horizontal and vertical components of the fluid velocity.

Without loss of generality, we choose ¥ = 0 along the bottom A'D'DC’, theny = 1 on
stream line ABC, and the configuration of the flow in the complex potential plane is sketched
in Figure 2.

A
A B . Ve,
P=1
=0 3
A’ D’ 0 D 3 &
Figure 2: The complex potential f plane.
We are currently formulating the problem as an integral equation.
We define the function 7 — i6 as:
W =u-—iv=exp(t—i0) (6)

Substitute (6) in (4), provides us with the final form of the Bernoulli equation that is necessary
for numerical calculation

exp(2t) — 2We exp(‘r)% =1 —0< P <+ (7)
Where We = %, is the Weber Number.

The kinematic boundary conditions on A’D’, D'D and DC' can be expressed as:
u=0onyYy=0and—o<p<d, (8
v=0 ony=0and ¢ <P < ¢p )
u=0on Y=0 and ¢p < ¢p < +00(10)

The function T — {6 is analytic in the strip 0 < ¥ < 1 and satisfy the conditions (7), (8), (9)
and (10).

12



We map the flow domain onto the upper half of the ¢ -plane by the transformation
¢=a+if = exp(—nf) (11)

The walls A'D',D'D and DC are mapped onto —oo < @ < 0. The problem in the complex ¢
plane is illustrated in Fig.3.

| We4

J
=

A POD g B A
Figure 3: The complex g-plane.

We introduce the curvilinear or contour integral of thet — i@ function on a path closed by

Where t is an image point of any point on the free surface t € ABC. The path y consists of a
large semi-circular arc of radius R, centred at the origin, and the real axis with a circular

indentation of radius € about the point t See Figure 4.

L IR

/

/
i

—R

S
L

\ o
R«

—

Figure 4: The complex ¢-plane showing the contour.

When R tends to infinity, the contribution to the integral shape of the semicircle of radius R
tends towards zero.

To the integrale in (12) is the principal value of Cauchy. Kinematic conditions (8), (9) ,
(10)and (11) imply

0(a) =0 for —oo<a<ap, (14)
and
0(a) = %fomD, <a<ap (15)
and
0(a) =m forap < a <0 (16)
v(@)=—1 % — log % —fJ‘”%d(p, —0 < ¢ < 400 (18)

where 7'(¢) = t(e™™®) and 6'(¢) = 6(e %)

In ( 18) this integral equation is substituted to create an integro-differential equation which is
then solved numerically.

13



3. NUMERICAL PROCEDURE

To solve the integro-differential non-linear equation obtained in the previous section. We use
the numerical procedure and before that. The expression (18) is used to calculate T along the
free surface. It is necessary to have points, ¢, along the free surface from which the values t
can be evaluated.
This is done by creating a discrete of the potential function-, on the free surface 0 < ¢ < +o0
Let

oD =U-1D4A I1=1,.... ,N (18)
Where A > 0

we assess the values 7™ (I)of T(¢) at the midpoints
pm() =20 o, N -1 (19)

by applying the trapezoidal rule, we obtain

e T—ed™®

“ o e®™M N 0(Ne™ D Aw;
en—eff’m(l) 9

1
m —— —_ | — I i 2
(1) =3 log e—n+e¢ma)| X e ok

I=1,...,.N—=1 (20

where 6(j) = 9'((;[)(]')) and wj is the weighting function such that

! i =1,N
1 otherwise

And

90 _ 01+1—6;
% 21

Substituting (20) into (7), for all the N midpoints, yields a system of N nonlinear algebraic
equations for N unknowns 8(j),j = 1, ..., N. This system is also solved by Newton’s method.
The numerical calculations the previous, give a solution for the variables t and 6. These
variables are now used to obtain the equation of the free surface profile in the parametric form
x = x(d) andy = y(¢). Taking the real and imaginary parts of (6) we obtain

dx

% exp(—1) cos(8) (22)
And

] .

% = exp(—1) sin(0) (23)

4. DISCUSSION OF RESULTS

Solution without surface tension effect

Numerical results are obtained when the Weber number tends towards infinity, i. €. when the
surface tension effect tends towards zero, the system is reduced to :

exp(21™) =1 I=1,...... ,N (26)

We use the resolution method described above to resolve the system (26). We find that our
results are identical to the results we have already found in the article [3]

14



Solution with tension effect

The same numerical procedure is used to solve the non-linear system (7) for different values
of the Weber We number. The numerical calculation shows that there is a minimum value.
We = 8 for which our numerical procedure converges

For We > 300 all graphs describing the shape of the free surface are identical and coincide
with the exact solution, so it can be said that surface tension after this value can be neglected.
Figure 6 shows the different free surface profiles for We = 10 and the few different values of
H.

1

oaf R
oEF We = 10° ]
Wwe = 100
D4t We =20 g
gl we = 10 i
ol |
0zl |
04t ]
sl ]
sl |
-1
60 -0 40 30 20 0 0

Figure 6: Free surface shapes for different Weber number values and different H
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ABSTRACT

In the present paper, several types of stability of the zero solution for a semilinear fractional-
order system with exogenous input and Caputo fractional derivative have been studied using
the Lyapunov function. In particular, conditional asymptotic stability and conditional Mittag-
Leftler stability have been presented by introducing the Mittag-Leffler function of one and two
parameters.

Keywords: Nonlinear fractional —order system; fractional calculus; conditional asymptotic
stability; uniformly asymptotic stability; globally uniformly asymptotic stability.

1. INTRODUCTION

The fractional calculus generalizes the derivative and the integral of a function to the non-
integer order. Several defnitions have been introduced by Grunwald-Letnikov, Caputo,
Riemann-Liouville and others, in the next section we recall some of these definitions. For more
details, interested authors advised to consult for example [11,19, 20].

In this work, we focused on the Mittag-Leffler function, one of the important special
functions used in fractional calculus. Its importance is realized during the last one and a half
decades due to its direct involvement in the problems of physics,biology, engineering and
applied sciences. Mittag-Leffler function naturally occursas the solution of fractional-order
differerential equations and fractional-order integral equations. Various properties of Mittag-
Leffler functions are described in [5, 10, 15, 18]. Among the various results presented by
various researchers, the important ones deal with Laplace transform and asymptotic expansions
of these functions, which are directly applicable in the solution of differential equations and in
the study of the behavior of the solution for small and large values of the argument.

Recently, fractional calculus was introduced to the stability analysis of nonlinear systems,
see for example, [17] and many problems have been studied on this subject [7, 8, 13], where
some basic results are obtained including stability theory. The question of stability is of main
interest in physical and biological systems, such as the fractional Duffing oscillator [12],
fractional predator-prey and rabies models [1]. Stability of nonlinear systems received
increased attention due to its important role in areas of science and engineering. A large number
of monograph and papers are devoted to the fractional nonlinear systems [3, 6, 14].

2. NOTES OF FRACTIONAL CALCULUS

Definition 2.1. ([19,20]). For a given interval [a, b] in R, the Riemann-Liouville fractional

integral of order « >0, of a function u in [*([a, b])is defined by:
t

o _L _ o\l
1 u(t)—r(a)a(t 7)u(z)dr, tela,b].(1)

Definition 2.2. ([19]). For a given interval [a,b] in R, the Caputo fractional derivative of order
a >0, of a function v, is given by:

j (t—7)" " "u"(r)dr (2)

a

oDiult) = I'(h—-«a)
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where n—1<a=<n.
Definition 2.3. ([9,16]) The Mittag-Leffler function with two parameters is defined by

+0 Zk
E, 4(2) _;—F(ak+ﬂ)' 3)

where «a>0, f>~0 and zeC.

3. NOTIONS PRELIMINARIES
Consider the following system of fractional differential equation with Caputo derivative
JDIx(t)=f(t,x), t=t,,(4)
where 0<a<1land feC(R, xR",R").
We will assume that for any initial data (t,,x,)€R, xR", the system (4) with the initial
condition x(t,)=x, has a solution x(t;t,,x,)€C”([t,,+),R"). The purpose of the present
paper is to study the stability of the system (4), for this fact let us suppose that in the rest of

this paper that the origin x =01is a point of equilibrium of the fractional-order system (4), that
is f(t,0)=0.Now, to get our results we need the following definitions:

Definition 3.1. The equilibrium point x =0 of the fractional-order system (4) is said to be

(a) Stable, if for every & > Oand 7, € R, there exists 0 = d(&,?,) > 0 such that for any
X, € R",the inequality ||x0” =< O implies ||x(t, Zy, X, )|| <¢g,fort >t

(b) Uniformly stable, if for every ¢ > Oand ¢, € R, there exists & = (&) > 0 such that
for any x, € R",and ||x0” =< O the inequality Hx(t,to,xo )|| < &, holds for t > ¢.

(c) Uniformly attractive, if there exists £ > Osuch that for every & > Othere exists
T =T(g) > 0 such that for any ¢, € R, ,x, € R" with onn < fthe inequality
(2,2, xy)|| < &, holds for £ >z, +T.

(d) Globally uniformly attractive if the definition (c) is verified for any £ > 0.

(e) Uniformly asymptotically stable, if it is uniformly stable and uniformly attractive.
(f) Globally uniformly asymptotically stable, if it is uniformly stable and globally uni-
formly attractive.
Definition 3.2. We say that a continuous function ¢ : R, — R, is belongs to the class K if it

{—>+0

is strictly increasing and ¢(0) = 0.If furthermore @(#)————>+o0, we say that ¢ belongs to

the class K. A continuous function ¥ : R, — R, is said to be class KL if y(.,t) € K.
Definition 3.3. The nonlinear fractional-order system (5) is said to be conditional asymptotic
stable, if for & > 0 such that for any input H ,u|| < &, there exist a class KL function i satisfy-

ing for each bounded initial condition Hx(to )H the solution x(¢) satisfies
ol <yl t=1).)

Definition 3.4. The nonlinear fractional-order system (4) is said to be conditional Mittag-
Leffler stable, if for & > 0 such that input || ,u|| < &, the solution x(¢) satisfies

1
e < [kl )£, (2 =1)) ] 66)
where k, p are two positive constants.

Lemme 3.1. Let us consider the following initial value problem for a nonhomogeneous frac-
tional differential fractional equation with the Caputo fractional derivative of order o € (0.1).
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cDIy() - () =g(), =1,

(7
(o) =y,
Problem (7) was studied by Podlubny in [19] and its solution is given by:

Y0 = 2oE, (=1 )+ [ (=5 E, , (A1 = 5))g(5)ds. (8)

4. STABILITY RESULTS

Theorem 4.1. Assume that there exist a function J € C(R, x R", R, )which has Caputo
fractional derivative of order « for all ¢ >¢,, such that V'(¢,0) =0 and a class K functions
a,, o, satisfying

o (x) <V, x@) < e, (x), Viz1,VxeR",(9)

oW DIV (6, x(0) < =k = oq (| (5], e () < & (10)
If the input H ,uH < &is satisfied, then x =0 is uniformly asymptotically stable. In addition, if

a,,a,are two class K functions, then x =0 1is globally uniformly asymptotically stable.

Proof of Theorem4.1. First, we show that x = 0 is uniformly stable. The condition (10)
implies that there exist a nonnegative function /(¢) satisying

LDV (t,x(0) < —h(1), Vt=1,.(11)
From (11), it follows that:

V(t,x(0) <V (ty,%,) % [ (t — )" h(s)ds,

<V (ty,x(1,)),(12)
then, the condition (9) and inequality (12) leads to:
o ([x@[) <V (2, %,).(13)
Now, for any ¢ > 0,we can find & = d(¢) such that «,(0) < a,(€). Letx, € R" such that
||x0H =< 0.By using (10) and (13), we obtain that: ¢, (”x(t)”) <a, (”on) <a,(0) <, (¢).
Since &, € K, then we have: ||x(t)H <¢&, Vit 2=t,. Therefore, x =0 is uniformly stable.
Now, we show that x =0 is uniformly attractive. Let » be a positive number such that
a, (HxOH) < r.From the assumption H y|| < & and the conditions (9) and (10) it follows that:
CDIV(t,x(1) S =V (5,x(0)),  (14)
The inequality (14) implies that, there exist a nonnegative function g(¢)satisfying:
W DIV, x(0) <~V (t,x(1) - g(0).  (15)
Then, we have
V(t,x)=V(t,,x)E, (—c(t —t,)*), Yt=t,.(16)
A combination of (9) and (16) gives:
ay (X)) < e (%o P E, (=l = 2,)"), (17)
that is to say:
o (X)) < 7E, (et —1,)").(18)
From (18), it follows that :
-1 a
x| <@ (rE, (—c(t = 1,)*)).(19)
Since lim E_ (—cA”) =0, then
A—>40
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lim a, (rE,(=cA*)) =0,(20)

(because al_l (0)=0). Hence, we have for allg =0, there exist 7'=T(g) > 0 such that :
o (E, (—c(t—t,)*)) <&, Vt—t,>T,
which means that:

E, (—c(t—1,)") < @, Vi—t,2T.(21)
r

Thus, from (19) and (21), it follows that: ||x(t)H <e, Vit +T.

The last inequatlity shows that x =0 is uniformly attractive. Therefore, x =0 is uniformly
asymptotically stable. Now, suppose that ¢,,c, € K. In view of (17), it follows that:

@) < & (@ (D E. (=et = 1,)), V2 214,.(22)
Let Ve >0 and &> 0 such that|x,| < & From (22), it follows that:

@) < & (@ (DE, (=e(t = 1)), Vi 2 1,.(23)
Then, by using (20), we find that there exist 7 =T7(g,&) such that:

E(—c(t =1,y )< AE) iy 5T, 24)
a,(&
hence, from (23) and (24) we obtain: Hx(t)H <eg, Vizt, +T,

this inequality means that x =0 is globally uniformly attractive. Therefore, x =0 is globally
uniformly asymptotically stable.[]

Theorem 4.2. Assume that there exist a function J" € C(R, x R", R, ) which hasCaputo fractional

derivative of order ¢ forall >, and a class K functions ¢, , &, satisfying
o () <V, x@) < (|x]), Vi1, VxeR",(25)
C DV (t,x(0) <~k = e ()W (6, x(0), e () < k. 26)

then x =0 is conditional asymptotically stable.

Proof of Theorem4.2.In view of the condition (26) and the assumption || ,u” < ¢&,we find that:
thta V(t,x(@)<—(k—a,(&)V(t,x(t)), then there exist a nonnegative continuous
function A(z) such that ;VD,“V([ ,xX(2)) =—cV(t,x(t))— h(t).

From Lemma 3.1, it follows that for #>¢,:

V(ta .X) < V(to > xO)Ea (—C(f - to)a ) (27)

Therefore, the inequality (27) and the condition (25) leads to:
o (X @) < e (xDE, (=e(e =1,)"),

this means that:

)] < o™ (et (o £, (e = 1)) 28)
Then (28) gives: ||x(t)H < I,V(on
Theorem 4.3. Assume that there exist a function V' € C(R, x R", R, ) which has Caputo
fractional derivative of order « for all # >#,and a class KL function ¢, satisfying

,t —t,).Thus, x =0 is conditional asymptotically stable. [J

cl||pr <V(t,x(t)) < csz g

w DIV (1, x(0)) < =(k — o, (|))]}x

, Vt>t,,YxeR",(29)
" ay(|u <k .G0)
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where ¢,,c,, pand k are positive constants. Then x =0 is conditional Mittag-Leffler stable.
Proof of Theorem4.3. By the conditions (29),(30) and the assumption || ,u” < &, we find that:

e k—a($)
RO B RO G1)
2
Inequality (31) means that there exist a nonnegative function /() such that:

C o . .

GOV (@, x(1)) S —cV (8, x(1)) — h(t),(32) By using Lemma 3.1, it follows that for
1

12t Hx(t)” < [M ||x(t0 )HEa (—c(t—1,)" )]; , where M is a positive constant. Then point

x =0 is conditional Mittag-Leffler stable. [J

S. ILLUSTRATIVE EXAMPLE

Before giving some illustrative examples, we need the following auxiliary lemma:
Lemme 5.1. ([2]). For any differentiable vector x(#) € R" and any time instant# > #,, we have:

1(,D“[ (t)x(t)]<x (). Dx(1), Yeae(0,)).

Now, In all that follows, we consider x(¢) = (x,(¢), x,(¢),x;(¢)) € R*, and ||x(t)H stands for its

3 1
Euclidean norm: Hx(t)” = (z xiz)2 and 0 <« <1.
i=1
Example 5.1. Consider the following fractional-order system:

Cha _ —t
D{x, =—4x, +e"" cos(x,)x;

Cpa sin(x;) 33
D/'x,=-4x, + X (33)
t, “t "2 2 1+l’2 2
D x, =—Ax, +sin(x,)x,

0

2 2 2
XX X

V(t,x)=

with the input H y” < ¢.By using Lemma 5.1, we have:

1 . .
C . . X . . ‘NC .
CDAV(t,x(t5,%,)) < 3 [, (F520 3, S DFx, (£ X) + X, (5, %) D, (15,

+ ;132 X, )r?l)fa)% (%315, xo)J =—0V (1, x(t:1y.%,))-
Then, it is enough to choose ¢, (H ,u”) <k<q (H ,UH) + 6.Now, all assumptions of the

Theorem 4.2 are satisfied, therefore x =0 is conditional asymptotically stable.
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ABSTRACT

In this article, the mixed convection boundary layer flow in micropolar nanofluids at the lower
stagnation point of a solid sphere in a stream flowing vertically upwards has been studied
numerically for both issues of a heated and cooled solid sphere with a constant surface heat flux.
Grephene oxide nanoparticle suspended in two different types of fluids namely water and
kerosene oil. The governing partial differential equations including continuity, momentum and
energy have been reduced to ordinary differential equations ones and solved via an implicit
finite-difference scheme known as the Keller-box method. Numerical solutions are taken out
for temperature profiles, velocity profiles, angular velocity profiles, with different values of the
parameters, namely, the nanoparticle volume fraction y and the mixed convection parameter
A . itis found that GOwater has higher in temperature compared with GOkerosene oil

Keywords:Mixed Convection, stagnation point,MicropolarNanofluid, Solid Sphere.

1. INTRODUCTION:

A nanofluid is a heat-transfer fluid[ 1] containing nanoparticles with a size smaller than 100 nm
such as oxides, metals and carbides [2]. Common base fluids comprise water oil and ethylene
glycol[3], The nanoparticles have a unique chemical and physical properties, while compared
only to base fluid, will increase the efficiency of the thermal conductivity and the convective
heat-transfer coefficient [4]. Nanofluids have many properties that make them potentially useful
in several applications in heat transfer, such as microelectronics, fuel cells, pharmaceutical
processes, and hybrid-powered engines. Buongiorno, [5] published an article on the convective
transport in nanofluids. The nanofluid flow inside a two-sided lid-driven differentially heated
square cavity is studied numerically by Tiwariet al, [6]. The nanofluids used to acquire optimum
thermal properties at the lowest volume fraction of nanoparticles in the base fluid by Godson
et al, [7]. Kandelousi, [8] also considered the nanofluid flow and heat transfer through a
permeable channel. Haqet al, [9] studied the slip effect on heat transfer nanofluid flow past a
stretching surface.Several references have on nanofluid as in the universal book by Das et al,
[1], and many studies that have been conducted to boost the heat-transfer characteristics
technique by nanofluids, including those by [10-16].

The classical Navier-Stokes theory described the flow properties of non-Newtonian
materials, but this theory was not suitable to describe microrotations, certain microscopic
effects growing from the local structure of fluid elements, and some naturally arising fluids,
which are known as micropolar or thermomicropolar fluids. Micropolar fluid theory and its
dilation to thermomicropolar fluids were initially introduced by Eringen, [17]. Further, many
physicists, engineers and mathematicians have been studied on the micropolar fluid to conclude
the different results related to flow problems. Hassanienet al[18]presented the boundary layer
flow and heat transfer from a stretching sheet to a micropolar fluid. Papautskyet al, [19]
investigated the laminar fluid behaviour in microchannels using micropolar fluid theory.
Nazaret al, [20]consideredstagnation point flow of a micropolar fluid towards a stretching
sheet.Exact solutions are obtained by the Laplace transform technique for the unsteady flow of
a micropolar fluid by Sheriefet al[21]. Hussananet al[22]described the microrotation,
temperature, velocity and concentration are considered. Hussananet al[23]explained the
unsteady natural convection flow of a micropolar fluid on a vertical plate oscillating in its plane
with Newtonian heating condition. Free convection boundary layer flow of micropolar fluid on
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a solid sphere with convective boundary conditions was considered by Alkasasbehet al,[24].
Alkasasbeh,[25] explores the heat transfer magnetohydrodynamic flow of micropolar Casson
fluid on a horizontal circular cylinder with thermal radiation. Natural convection on boundary
layer flow of Cu-water and Al,Os-water micropolar nanofluid about a solid sphere investigated
by Swalmehet al, [26] and micropolar forced convection flow over moving surface under
magnetic field was inspected byWagqaset al,[27].

The aim of this paper is to study the mixed convection boundary layer flow over a solid
sphere in a micropolarnanofluid with constant surface heat flux. graphene oxide (GO) in two
based micropolarnanofluids (water and kerosene oil) havebeen considered in the present
investigation. The boundary-layer equations are solved numerically via efficient implicit finite-
difference scheme known as the Keller-box method, as displayed by [28]. The effect of the
nanoparticle volume fraction parameter, the mixed convection parameter and micro-rotation
parameter on temperature, velocity and angular velocity at the lower stagnation point of the
sphere are discussed and explained in the tables and figures.

2. BASIC EQUATIONS

Consider the impermeable solid sphere of radius a, which is placed in an incoming stream of
micropolarnanofluid with an undisturbed free-stream velocity U and constant temperature
1. , with steady mixed convection boundary-layer flowlt is also supposed that the surface of
the sphere is maintained at a constant temperature,7,, with 7 >7 for a heated sphere

(assisting flow) and 7 < T, for a cooled sphere(opposing flow).

The basic steady dimensionalmomentum and energy equations for micropolarnanofluid,which
are defined byTiwari and Das [6].and Swalmeh et al.[26]

pf m " \2 l ﬂq Pf oh 9
nf( (x)+K)f"+26"-(f") +Pnf [lp{ﬁfjﬂ ;()pf] +/~7nf 8y+4 (1)

L kn/ /kf
Pr| (1-7)+ 2(pc,),/(pc,),

&(D(l)+£jh”+th'—f'h—&K(2h+f")=0. 3)
pnf 2 pnf
alongwiththe boundary conditions

£(0)=£(0)=0, &'(0)=—1, h(0)=—%f”(0) as y=0,

0" +210 =0, )

f’—>§,49—>0,h—>0 as y — o,
2 (4)

where the primes denote differentiation with respect to y.[2 8.

3. RESULTS AND DISCUSSIONS
Equations (1)—(3) subject to the boundary conditions (4) have been solved numericallyby using
an efficient implicit finite-difference scheme known as the Keller-box method, along with
Newton’s linearization technique as described by [28]for verious values of parameters: mixed
convection parameter A, the micro-rotation parameterk, and the nanoparticle volume fraction
¥ on temperature, velocity and angular velocity fields, at the lower stagnation point of a solid
sphere, x~ 0, for both the assisting (4 > 0) and opposing (4 <0) flow cases
Figures 1to6display the characteristics of the nanoparticle volume fraction } and the
micro-rotation parameter K on the temperature profiles, the velocity profiles, and the angular
velocity respectively, of GO in water and kerosene oil at the lower stagnation point of the
sphere,x ~ 0. It can be seen that when the nanoparticle volume fraction y and the micro-
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rotation parameter K increase, the velocity profiles and the angular velocity profiles decrease,
but the temperature profilesincrease. Besides that, it is also noticed that GO water has a higher
temperature, velocity and angular velocity compared with GO kerosene oil for every value

ofthe nanoparticle volume fraction y and the micro-rotation parameter K .

0.8

GO-Water
----- GO-Kerosene oil

0
0 0.5 1 15
y

Fig.1. Temperature profiles at x =0 using
GO in water and kerosene oil-
basednanofluids, for various values of y,

when A =3and K=0.3

-0.05f

= GO-Water
----- GO-Kerosene oil

04y 05 1 15 2 25 3 35

v
Fig.3. Angular velocity profiles at x =0
using GO in water and kerosene oil-
basednanofluids, for various values of 7,

when A =3and K =0.3

24

1.5 T r -
x=0,0.1,02 A7 0"
A
/
2%
1/
~ 1 7"
~ 0y’
< Wy
~ 07
2 /
N 4
(& I'I
< 4
~05 /4
// GO-Water
/7 —— GO-Kerosene oil
4
0 : : ' : '
0 0.5 1 1.5 2 25 3

Fig.2. Velocity profiles at x ~ 0 using GO
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Fig.4. Temperature profiles at x = 0 using
GO in water and kerosene oil-
basednanofluids, for various values of K,
when A=3and y=0.2
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Fig.5. velocity profiles at x =0 using GO
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Fig.6 Angular velocity profiles at x =0
using GO in water and kerosene oil-
basednanofluids, for various values of K,

=02 when A=3and y=0.2

4. CONCLUSIONS

In this paper, we have numerically studied the mixed convection boundary-layer flow about
solid sphere in amicropolarnanofluid with constant surface heat flux. We discussed into the
effects of the mixed convectionparameter A, the nanoparticle volume fraction y , the micro-

rotation parameter K ,and nanoparticles GO suspended in two based fluids, such as water and

kerosene oil. The problem is modelled and then solved via Keller box method. From this study,
we could conclude the following conclusions:

1.

1i.

iil.

The GO water has a higher temperature, velocity and angular velocity compared with
GO kerosene oil for every value of parameters y and K .

The GO kerosene oil has a lower temperature compared with GO water for every value
of 4.

The GO water has a higher velocity and angular velocity compared with GO kerosene
oil for every value of parameter A, but the opposite happens when the case of the
cooled sphere (A4 <0 ).
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ABSTRACT

In this letter, the existence of some properties of solutions in 3-D Lozi map is presented, that
the results have been confirmed by simple rigorous mathematical analysis methods.

Keywords: 3-D Lozi map, Unbounded orbits, Global attractors, solutions of the 3-D Lozi map.

1. INTRODUCTION

In literature [2], the three-dimensional Hénon map is quadratic map with constant Jacobian
matrix determinant, and its inverse map is quadratic, and the coordinates are not decoupled by
the action of the map. Several researchers have defined and studied quadratic 3-D chaotic maps
such as with quadratic inverse and constant Jacobi [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]
such as the simplest 3-D quadratic map studied in [1] and given by

X 1+ bz + ax?
=) Yo
z y

Where (x,y,z) € R® and (a, b) € R? are map parameter, a # 0 and b # 0 . The chaotic
attractor in Fig.1 exhibited by the 3-D Hénon map (1) is very similar to the attractor of the
famous 2-D Hénon map [14, 15] and are obtained from a period-doubling bifurcation route to
chaos.

The 3-D Lozi map (2) is a simplification form of the 3-D Hénon map (1), obtained from a
simple modification the quadratic nonlinear term x? is replaced by the piecewise term |x|. Then
the form of the 3-D Lozi map (2) is given by

X 1+ bz + alx|
h(x,y,z) = (32) = ( X )(2)
z y

Furthermore, recent publication [13] show that while varying the parameter a or b the
attractor of the 2-D Lozi map [16] and the attractor of the 3-D Lozi map (2) in Fig.4 are very
similar and are obtained from a border-collision bifurcation route to chaos.

On the other hand we can transform the 3-D Lozi map (2) into a third order difference
equation: Let (x;,¥¢.2¢), I = 1,2, ... be a trajectory of the map (2) and we suppose x = X,

Y = X;—1 and z = x;_, then the map (2) can be written as

Xer1 = 1+ bxe—p + alx| 3)
we remark that the space can be separated into two linear areas are defined by
{21 =(x,y,z) ER3:x > 0}

¥, =(x,y,z) ER:x <0
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In the two areas ¥ and X, , map (3) can be rewritten as follows

_ {1 + bxy_, + ax;ifx € 21}
Xt+1 711 4 bx,_y —ax ifx €3,

This paper studies the existence of some properties of solutions of the 3-D Lozi map (3) such
as, stability, attractivity, unboundedess and exact formula of solutions.

Figure 1: Chaotic attractor obtained in xy-plan from the 3-D Hénon map (1) for
a = —1.65andb = 0.1.

185 152 1% 126 e 113

Figure 2: Bifurcation diagram of the 3-D Hénon map (1) obtained for b = 0.1
and —1.65 < a < 1.1.
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Figure 3: Variation of the largest Lyapunov exponent of the 3-D Hénon map (1)
forb = 0.1and —1.65 < a < 1.1.

08 -

0.4

-DEH

Y Y
0.8 =D& F} o4 = oE

Figure 4: Chaotic attractor obtained in xy-plan from the 3-D Lozi map (2) for
a = —1.65and b = 0.1.
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Figure 5: Bifurcation diagram of the 3-D Lozi map (2) obtained for b = 0.1
and —1.65 < a < 1.1.
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Figure 6: Variation of the largest Lyapunov exponent of the 3-D Lozi map (2)
forb = 0.1and —1.65 < a < 1.1.

2. STABILITY CONDITIONS OF SOLUTIONS OF THE 3-D LOZI MAP

In this section we investigate the local stability of solutions of the 3-D Lozi map (3).

Theorem 2.1. For all values of the map parameters (a,b) ER?>:b < 1— a and b >
1 + a, the 3-D Lozi map (3) has two fixed points, and they are given by

S1= =11 and S, = ==—(1,1,1).

b+a-1 -a
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Proof. The fixed point of the 3-D Lozi map (3) is the real solutions of

1+ bx +alx] =x

-1
b+a-1
have the fixed point S;. If x € £, we have (b — a — 1)x = —1 then one has, x =

b > 1 + a.then we have the fixed point S,,.

If x € £, we have (b + a — 1)x = —1 then one has, x = withb < 1 — a then we

with

b—a-1

Theorem 2.2. If a > 0 and b > 0, then the fixed point S; of the 3-D Lozi map (3) is locally
asymptotically stable ifa + b < 1.

Proof. Let f : R} X RX R — R be a function defined by f(x,y,z) = 1 + ax + bz, we have
fx(x,y,2) =a, f,(x,y,2z) = 0and f,(x,y,2z) = b. If x €Z; and a > 0, b > 0 the linearized
equation of the 3-D Lozi map (3) associated with this fixed point S; is, Y¢1q = f (X, ¥, 2)ye +
(Y, 2)ye—1 + (Y, 2) Yo

or

Ye+1 — @Yr — byr_o = 0(4)
according to the Theorem available in [15] the 3-D Lozi map (3) is asymptotically stable if
lal + [b] < 1(5)
Fora,b > 0 and from (5) we obtaina + b < 1.

Theorem 2.3. If a < 0 and b < 0, then the fixed point S, of the 3-D Lozi map (3) is not
locally asymptotically stable if b — a > 1.

Proof. Let g : R X R X R} — R be a function defined by g(x,y,z) = 1 — ax + bz, we have
9x(x,y,z) =—a , gy,(x,y,z) =0and g,(x,z) = b. If x EX; anda < 0, b < 0 the
linearized equation of the 3-D Lozi map (3) associated with this fixed point S, is, ;1 =
9x(x,y, 2)ye + 9y (X, ¥, 2)ye-1 + (%, ¥, 2) Ve

or
Vi1 + aye — by, = 0(6)

according to the Theorem available in [15] the 3-D Lozi map (3) is not asymptotically stable
if

lal = 1b] > 1(7)

Fora < 0,b < 0and from (7) we obtain b —a > 1.

3. ATTRACTIVITY OF SOLUTIONS OF THE 3-D LOZI MAP

In this section, we aim to examine the global attractivity of solutions of the 3-D Lozi map (3):

Theorem 3.1. If x € £;and a > 0, b < 0 then the fixed point S; of the 3-D Lozi map (3) is
global attractor.

Proof. Let o, B (¢ < f) are a real numbers and consider that V: [a,B]>*—[a.B] be a function
defined by V(x,z) = 1 + bz + ax then it is easy to see that the function V (x, z) is increasing
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in x if @ > 0 and decreasing in z if b < 0. Suppose that (m, M) is a solution of the system
M =V(M,m)and m = V(m, M) then we have that M =1+ bm+aM andm =1+ bM +
am therefore (1 —a)M = 14+ bmand (1 —a)m = 1+ bM,subtracting we have that
1-—a)(M—m) = b(m—M)sinceb < 1—a weobtainm = M. According to the
result available in [18] that the S; is a global attractor of the 3-D Lozi map (3).

Theorem 3.2. If x € £,and a, b < 0 then the fixed point S, of the 3-D Lozi map (3) is global
attractor.

Proof. Let o, B (¢ < [) are a real numbers and consider that W: [a,]*— [a,] be a function
defined by W(x,z) = 1 + bz + ax then it is easy to see that the function W (x, z) is
increasing in x if @ < 0 and decreasing in z if b < 0. Suppose that (m, M) is a solution of the
system M = W (M, m) and m = W(m, M) then we have that M = 1 4+ bm — aM and m =

1 —bM + am therefore (1 + a)M = 1+ bmand (1 +a)m = 14 bM subtracting we
have that (1 + a)(M —m) = b(m — M )since b > 1+ a we obtainm = M. According
to the result available in [18] that the S, is a global attractor of the 3-D Lozi map (3).

4. UNBOUNDEDNESS OF SOLUTIONS OF THE 3-D LOZI MAP

In this section, we give sufficient conditions for the existence of unbounded solutions.

Theorem 4.1. If a > 1, b > 0 and x, x;_; > 0, then the every orbit of the 3-D Lozi map (3)
is unbounded if xo > 0.

Proof. Let (x;);_, be a solution of map (3). If x; > 0 and x;_; > 0 the 3-D Lozi map (3) can
be rewritten as follows

Xep1 = 1+ bxe_y + ax4(8)
from (8), it follows that for all ¢
Xer1 = 1+ bxp—y + axy > ax,
by the method of iterations, we have for all integral values of t
x; > atxg
it is clear that the orbit is unbounded since x4 > 0.

Theorem 4.2. Let (x;);>— be a solution of map (3).If a > 1, b < 0 and x¢, x;—; < 0, then
the every orbit of the 3-D Lozi map (3) is unbounded if xo < 0 and t is an even number.

Proof. Let (x;)¢>—; be a solution of map (3).If x; < 0 and x;_; < 0 the 3-D Lozi map (3)
can be rewritten as follows

Xe+1 = 1+ bxp—p — axy(9)
from (9), it follows that for all ¢
xt+1 = 1 + bxt_z - aXt Z - axt

by the method of iterations, we have for all integral values of ¢
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X > (- @)'xg

it is clear that the orbit is unbounded since xy < 0 and t is even.

5. Conclusion

In this letter we give the suffcient conditions for the existence of some properties of solutions
in a 3-D Lozi map. that the results have been confirmed by simple analysis proof.
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ABSTRACT

In this paper, conditions are identified under which a sign pattern corresponding to undirected
cycles admits matrices which are sign regular of order two.
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1. PRELIMINARIES

In this section, we collect several known definitions and results that will be used later on.

A matrix is called sign regular of order k (denoted by SSRy) if all its minors of order & are non-
negative or all are non-positive. It is called strictly sign regular of order k (denoted by SSRy) if
it is sign regular of order k, and all the minors of order k are non-zero. In other words, all minors
of order k are non-zero and have the same sign. Such matrices are only rarely considered in the
literature, see, e.g., [7], where a test for an n X k matrix with k < n to be SSR; is presented. A
matrix is called sign regular (SR) if it is SRy for all k, and strictly sign regular, (§SR) if it is
SSR for all k. Given a square matrix A € R™™ and p € {1, ..., n}, consider the : minors of
A of order p. Each minor is defined by a set of p row indexes 1<i; <i, <+ <n, and p
column indexes 1< j; < j, < -+- < n. This minor is denoted A(a|f) where a = {il, . ip}and
B = {il, ...,ip}(with a mild abuse of notation, we will regard these sequences as sets), we
suppress the curly brackets if we enumerate the indexes explicitly. We mean by k£ -minors of 4
all minors of 4 of order & and say the minors of A are ssr when they are all non-zero and have
the same sign.

2. INTRODUCTION

The most important examples of SR [SSR] matrices are totally nonnegative TN [totally positive
TP]

matrices, that are, matrices with all minors nonnegative [positive]. Such matrices have
applications in a number of fields including approximation theory, economics, probability
theory, computer aided geometric design and other fields [3], [5], [8].

In qualitative and combinatorial matrix theory, a methodology based on the use of
combinatorial information such as the signs of the elements of a matrix is very useful in the
study of some properties of matrices. A matrix whose entries are chosen from the set {4+, —,0}
is called sign pattern matrix, the multiplicative and additive rules covering the symbols {+, —,0}
are the same as in real numbers. A zero pattern is a sign pattern matrix whose entries are all
equal to 0. Given an n X m real matrix A = (a;;), we denote by sign(4) the sign pattern matrix
obtained from A4 by replacing each one of its positive entries by + and each one of its negative
entries by —. For an n X m sign pattern matrix p, we define the sign pattern class C(p)by

C(p):={A € R™™ :sign(4) = p}

A permutation pattern is simply a sign pattern matrix with exactly one entry in each row and
column equal to +, and the remaining entries equal to 0. A product of the form ST PS, where S
is a square permutation pattern and P is a sign pattern matrix of the same order as S, is called a
permutation similarity. A square sign pattern matrix whose off-diagonal entries are equal to
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zero is called a diagonal pattern, and a product of the form DpD, where D is a diagonal pattern
with no zero entries in the main diagonal and p is a sign pattern matrix of the same order as D,
is called a diagonal similarity. Note that STPS and DpD are again sign pattern matrices. The
origins of sign pattern are in [9], where the author pointed to the need to solve certain problems
in economics and other areas based only on the signs of entries of the matrices. The exact values
of entries of the matrices may not always be known.

A sign pattern matrix p is said to require a certain property p referring to real matrices if all
real matrices in C(p) have the property p, and is said to allow the property p if some real
matrices in C(p) have the property p. In the literature, one can find, in the last few years, an
increasing interest in problems that arise from the basic question of whether a certain sign
pattern matrix requires (or allows) a certain property. See, e.g., [1], [4].

3. SIGN-PATTERN OF SIGN REGULAR MATRICES MATRICES OF
ORDER 2 QUATIONS

In this section, we focus on the question which sign pattern matrices allow the property of
belonging to the class SR,. A graph theoretical approach will be quite useful to answer this
question. Let p = (p;;) ann X n sign pattern matrix. The graph G(p)=(V(G),E(G)), where the
set of vertices V(G) is {1, ...,n} and (i,)) is an edge or arc in E£(G) if and only if p;; # 0. A
path in a graph is a sequence of edges (iy,i3), (i3, i3), ..., (ix—1, ix) in which all vertices are
distinct, except, possibly, the first and the last. The length of a path is the number of edges in
the path. A cycle is a closed path, that is a path in which the first and the last vertices coincide.
Given a cycle in (iy, i), (i3, i3), -, (ik=1, i), --s (ik, [1)in a graph G(p), where p = (p;;) is
a sign pattern matrix, we define the sign of the cycle as 1 if p; p, pi,pi,) -, Py, Pi, = + and

pilpizpizpi3f ---!pikpil =

Remark 3.1. [1, p.2048]
If p is a sign pattern matrix whose associated graph is a directed n-cycle, then there is a
permutation similarity that transforms p into the following form

0 p, O O .. 0 O
0 0 p, 0O - 0 0
0 0 0 py 00 0
O
0O 0 0 0 0 0 0
0 0 0 0 0 p,.,
py, 0 0 0 .. 0 O

where pp; # 0 and p; ;41 # 0 fori = 1,...,n — 1. We will treat the graph as undirected when
convenient. Also if p is a sign pattern matrix whose associated graph is a directed n-cycle with
n-loops, i.e.,p;; # 0 forall fori = 1, ..., nn, then there is a permutation similarity that transforms
p into the following form

p, P, O 0 .. 0 0
0 pyp Py O - 0 0

0 0 p,; p, O 0 0

0 0.0 0 0 0
Simijlar to Definition 3.1 [2?, we introduce the| following definition.
0 O 0 0 pn—l,n-l pn—l,n

p, O 0O 0O .. O P,
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Definition 3.2.
We say that a sign pattern matrix p = (p;;) has the loop-path property if p;;p; ;41 > 0 for every
i =1,..,n(as aconvention p, 41 = 1).

Theorem 3.3.

Let p = (p;j) be an n X n sign pattern matrix with p;; # 0 for all / whose associated graph
G(p) is an undirected n-cycle. Then there exist a SR; matrix in C(p) if and only if p has the
loop-path property and the sign of the n-cycle is -1.

proof

Let p = (p;j) be an n X n sign pattern matrix with p; # 0 for all i whose associated graph
G(p) is an undirected n-cycle and there exists SR, matrix in C(p). Without loss of generality
and by Remark 4.1 we may assume that any matrix A € C(p) is of the form

a, a, 0 0 0
0 a, a; O 0
0 0 a3y a, O 0
where sign (a;;) = 4| : : o : : p;j for all choices of
iandj and a;;+1# 0. Suppose that there
exist i € 60 0 0 0 0 0 {1,..,n—1} such
that a;;a;i44 <0, o 0 o0 O .. a,,, a,,,| (as a convention
Apn+1 = 1). Since a 0 0 0 0 a ’ A is SR,, we have
L nl c m ]

SigN (QiiQi+1,i+1) = SIGN (Qji410i41,i+2)-
If @j11+1i41,i+2 > O this contradicts 4 is SR,. If @41 4104142 < O this contradicts the
fact that

Sign (@;;@iv1,i+1) = SIGN (A;iQi41i42)-
Thus p has the loop path property and the sign of the n-cycle ia —1.

Conversely, assume p has the loop path property. p by permutation similarity see Remark 4.1,
has the following form:

p, b, O 0 .. 0 0
0 p, by O 0 0
0 O py py, O 0 0
p=| : : I : :
0O 0 O 0 o 0 0
0 0 0 0 ... Paps Poan
lp, O O 0 .. 0 Pon |

Let D be the diagonal sign pattern matrix defined by

D = diag(1, p12, P12DP23, P12P23D34s ) P12D23 - P1in—1n)-
Given that p;;41pj41; < Ofori =1,..,n—1,1tis easy to see that
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P + 0 0 0

0 Pn T 0 0

0 0 pi, 0 0

DpD™ = '

0 0 O 0 0

O 0 0 pn—l,n—l +
Since p has e the loop-path
property p anp i+l 0 0 0 P | and the sign of
n-cycle is -7 —1, it is clear

that all the 2-nontrivial minors of the matrix B,

+ 0 O 0 O
0 + 0 0
0O+ + 0 0 O
ppp =| i . .
0 0 0 0 0 0 O
0 0 O
-0 0 O 0 +

are ssr, i.e., B is a SR, matrix in C(DpD), by using diagonal similarity, we conclude that there
exists SRymatrix in C(p) which completes the proof. N

4. CONCLUSION AND FUTURE WORKS

In this work we identify conditions under which the sign pattern corresponding to
undirected cycles admits SR, matrices. Topics for future research include sign patterns
that does not correspond to undirected cycles and admit SR, matrices. If a sign pattern
matrix A € SR;, and two arbitrary real matrices By, B, € C(p) then sign(B;,* B,) €
SRy, we call this property the closure property of SRr matrices.The question arises
whether the SR;matrices have the closure property. Recently, we study the interval
property of matrices that are strictly sign regular of given orders. To explain the interval
property, we define A* € R™" by A*: = DAD, where D: = diag(1,—1, ..., (1)),
The transformation * is usually the "checkerboard transformation." As usual, A <
B and A < B for A,B € R™™ will be understood entry-wise. Let A <* B and A <* B
if A* < B* and A" < B*, respectively. The set of the matrix interval with respect to the
partial ordering <* will be denoted by I(R™™), and [{ A,T A]with | A = (a;;),TA =
(a;j). Equivalently, a matrix interval can be represented as an interval matrix, i.e., a
matrix with all entries taken from /(R), the set of the compact and nonempty real
intervals. We extend the properties of real matrices to matrix intervals by saying that a
matrix interval has a certain property if each real matrix contained in the interval
possesses this property. Matrix intervals of several classes of matrices are investigated
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by some mathematicians, see e.g., [6], [10]. The question arises whether a sign pattern
that admits sign regular matrices of specific order have the interval property.
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ABSTRACT

In this work, we obtain some results concerning the quasi-Hadamard product for subclasses
ST,(a, B) and KT (ax, ) of [ -spirallike functions of order ¢ .

Keywords: Analytic and univalent functions; Quasi-Hadamard product.

1. INTRODUCTION AND PRELIMINARIES
Let

f@)=az-Yaz" (4>0,a,20), ()gz)=bz-Ybz" (b>0,b,>0),
n=2

n=2

)

fi (Z ) :al,iZ _Zan,iz ! (al,i >0’ an,i 2 O)a (3)
n=2
and
g,(z)=b,z=>b,,z" (b,>0,b, 20), (¥
n=2

be analytic in U={ZI |Z| <1 }
A function f* of the form (1) is said to be in the class ST, (e, ) if and only if

e’’’ 1 1
T 2 S2a €Y ®

for some real £ and O<a <1. Also f € KT, («, f) if and only if
—Iﬂ
e 1 1

G OF ) 2a e CFY @

for some real f# and 0 <a <1. The classes ST, (, ) and KT (e, 3) were introduced by

Owaetal. [9]for f (z)=2z + Zanz " €S ,where S is the class of all analytic and univalent
n=2

in U. This class of functions has been extensively exploited in some recent articles to study
subclasses of functions satisfy certain conditions(see [12-19]).

* Tariq Al-Hawary
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In [9], Owa et al. proved that /" (z) € ST, (e, ) (the class of /3 -spirallike functions of
order ) if

Re{e’ﬁ M} >a, (7)
f (@)

andf (z) e KT (e, ) (the class of S -Robertson functions of order & ) if

Re{e"ﬁ (1+MJ} >a, (8)
f'@@)

(see [1, 5)).
Using arguments, as given by Owa et al. [9], wehave the following results for classes
ST,(a, f)and KT (ex, B).
If f €S satisfies
Z(n +‘n —20e'’

=2

for some |ﬂ|<% and 0<a <cosf, then f (z)eST (e, ), and if f €S satisfies

Jo, <(1-1-20¢"|)a, ()

3

211 (n +|n —2aeiﬂ|)an S(l-|1—2aeiﬂ|)al, (10)

n=

for some |ﬂ|<% and 0<a <cosf, then f (z) e KT, (a, ).

For functions defined by (1), let ST ,(a, ) and KT ,(a, B) the classes of whose coefficients
satisfy the conditions (7) and (8), respectively. We note that ST, (o, f) = ST, (a, B)and
KT(o, B) S KT (@, ).

We now introduce the following class of analytic functions.

Definition 1.1. A function /" (z ) €ST, («, ) for some ‘,8| < % and 0<a <cosf
if and only if
n" (n+n-2ae'’ |, <(1-l-2ae'’||a,. (11
51 o -2, (120 o
We note that, the class ST, (cr, 5) is nonempty as the following function

. = (1-’1—20{e’ﬁ’)a1
() =az _WZ:;' n" (n +’n —Zae’ﬂ‘)

A,2".(12)

where || < % and 0<a <cos B, a, >0, 4, 20and Y 4, <1.Accordingly, the quasi-
n=2
Hadamard product of functions c¢(z ) and d (z )is given by
c*d(z)=abz —Zanbnz ".(13)
n=2

(see Owa [10, 11] also, [2]-[8]).
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2. MAIN RESULTS

Theorem 2.1. For eachi =1,2,---,p and j =1,2,---,q,let the functions f,(z)defined by
(3)be in the class [{:To(a,ﬂ) and g ;(z)defined by (4)be in the class §T0(a,ﬂ). Then
frEfy %) g kg, % *g (2)eST,,,, (. p).

Proof. Let O:=f, *f,*.--*f *g *g *...%*g (z),then

P q @ P q
- {H [T, } —z{nanﬁ,‘ [T, }
i=l j=1 n=2 | i=l j=

It sufficient to show that

© q

)4 P q
Z{nz”“’_l (n +|n —2ae"ﬂ|){Han,i an,j Hz "< (1—|1—2ae"ﬂ|){Hau Hbu }
i=l Jj=1 i=l Jj=1

n=2
Since £, (z) € KT,(at, ), so
Zw;n (n +|n —2aeiﬂ|)an’l. < (l-|1—2ae"ﬁ|)a1,,. (i=12,---,p).

n=

Therefore,

. <[ (1-1-2ae")) }au. "

n (n +|n —2ae’ﬂ|)

Since

n2(1-‘1—2ae’ﬁ’)Sn(n +’n—20¢e’ﬁ ),

it follows from (10) that

a,, <n’a, (i=12,-,p). (15)

n,i

Alsoforg ;(z) € §T0 (e, ), we have

i(n +|n —20e'”

n=2

Hence we obtain
b,, <n7b,; (j=1,2,,q).(17)
Using (11) for i =1,2,---,p, (13) for j =1,2,---.g —1, and (12) for j =¢, we obtain

0 )4 q
Z[nz‘”q’l (n +’n —2ae’ﬂ‘){Haw wa Hz "
n=2 i=l j=1
) )4 q
< 2[n2”+"_1 (n + |n - Zae"ﬂ|)bn,q {n_zpn‘(q‘l) (Hal’, Hbu )H
n i=1 j=1
0 p q
= (Z(n +‘n —2ae'’ )bw j(nal,i Hbu J
i=1 j=1
(

P, <(1-i-20e")b,, (j =1.2,+,q).  (16)

n=2

' JJ q
< 1—‘1—2ae’ﬁ‘){gal’igbl,]}.

Hence 0 €57,, , (o, f).00
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Corollary 2.2.For eachi =1,2,---,p, let the functions f (z)defined by (3)belong to
KTO(aﬁﬁ)' Then f, *f, **fp ESTZp—l(a’/B)'

Corollary 2.3.For each j =1,2,---,q, let the functions g, (z ) defined by (4) be in the class
§TO(&,ﬂ) Then g,*g, *"'*gq(z) eSTq—1(a:IB)-
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ABSTRACT

In this paper, we first introduce complex fuzzy parameterized soft set (CFPSS) and its related
properties. We then give basic operations on CFPSS namely complement, union and
intersection. Some properties of the operations are derived.

Keywords: Fuzzy soft sets; fuzzy parameterised soft sets; complex fuzzy parameterised soft set;
CFPSS.

1. INTRODUCTION

In 2002, Ramot et al. introduced the innovative concept of complex fuzzy set (CFS), where
the novelty lies in the range of values its membership function may attain. In contrast to
traditional fuzzy membership function, this range is not limited to [0, 1], but extends to the unit
circle in the complex plane. Historically, the introduction of real numbers was followed by their
extension to the set of complex numbers. Thus, in this research we will sug-gest a further
development from real numbers to complex numbers, which is allowed to utilize the benefits
of the complex numbers and fuzzy parameterized soft set properties under our generalization
concept in this research.

Initially, let us recall the development of the main concepts, which are used in this research,
fuzzy set (FS), soft set (SS), fuzzy soft set (FSS), fuzzy parameterized soft set (FPSS), complex
fuzzy set (CFS) and complex fuzzy soft set (CFSS). Fuzzy set contains all the possible elements
in each particular context or application and vast field, where fuzzy mathematical principles are
developed by extending the range of values its membership func-tion may attain from {0, 1} in
classical mathematical theory to [0, 1] in fuzzy set. It was introduced by Zadeh (1965). There
has been unbelievable interest in this concept due to its different applications and its ability to
pro-vide solutions in many problems of control, reasoning, pattern recognition, and computer
vision.

In this research we incorporate two new concepts, complex fuzzy soft set and fuzzy
parameterized soft set, to introduce the innovative concept of complex fuzzy parameterized soft
set. Soft set was introduced by Molodtsov (1999). It is a parameterized family of subsets of the
universal set. However, to solve complicated problems in economic, engineering and
environment, we cannot successfully use classical methods because of different uncertainties
typical for those problems, but with soft set we can solve these problems.Later, fuzzy soft set
was introduced and studied by Maji et al. (2001) and other authors like Chen et al. (2005) and
Aktas et al. (2007). It is a more generalized concept, which is a combination of fuzzy set and
soft set. In thedefinition of a fuzzy soft set, fuzzy subsets are used as substitutes for the crisp
subsets. Hence, we can say that every (classical) soft set may be considered as a fuzzy soft set.

Fuzzy parameterized (FP) soft set was introduced by Cagman et al. (2011). He proposed a
decision making method based on FP-soft set theory. Also, he illustrated an example which can
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be successfully applied to the problems that contain uncertainties. Besides, other researchers
have applied and generalised FPSS in several fields, named but a few (Cagman et al. 2010;
Bashir &Salleh 2012; Cagman& Deli 2012).

In 2011, complex fuzzy soft set (CFSS) was introduced by Nadia (2011). It is a more general
concept, which is a combination of complex fuzzy set and soft set. She generalised the range
of membership function of fuzzy soft set from [0, 1] to the unit circle on CFSS to introduce
CFSS. She also introduced basic operations such as com-plement, union and intersection.

Cagman and Enginoglu (2010a) introduced a definition help some researchers to define the
fuzzy parameter-ised soft set (FPSS) and their operations (Naim et al, 2010). More detailed
theoretical study of this concept was given by Cagman and Enginoglu (2010b). The
approximate function of a soft set is defined from a crisp parame-ters set to a crisp subsets of
universal set. But the approximate functions of FPSS are defined from fuzzy param-eters set to
the crisp subsets of the universal set.

The complex fuzzy set is characterised by a membership function, whose range is not limited
to [0, 1] but ex-tend to the unit disk in the complex plane. As explained in Ramot et al. (2002)
the key feature of complex fuzzy set is the presence of phase and its membership. This gives
the complex fuzzy set wavelike properties that could lead in constructive and destructive
interference depending on the phase value. Hence, Ramot et al. (2001) and Zhang et al. (2009)
introduced several possibilities for calculating the complement, union, intersection, and other
several properties for the phase term and amplitude term.

2. PRELIMANIRIES

Place In this section we recollect some relevant definitions and basic operations on fuzzy set,
soft set, fuzzy soft set, complex fuzzy set, complex fuzzy soft set and fuzzyparameterisedsoft
set.

Definition 2.1 (Zadeh 1965) A fuzzy set A4 in a universe of discourse U is characterised by a
membership function £, (x) that takes values in the interval [0, 1].

Definition 2.2 (Ramot et al. 2001) A complex fuzzy set (CFS) S, defined on a universe of
discourse U, is characterized by membership functions 4 (x), that assign to any element
x € U acomplex-valued grade of membership in S. By definition, the values of 4 (x), may
receive all lying within the unit circle in the complex plane, and are thus of the form
o (X) =rg(x) - e s, where i= =1, each of 7(x) and @, (x) are both real-valued,
and r; (x) [0, 1]-

The CFS S may be represented as the set of ordered pairs

S={x, usx):xe U }-

Definition 2.3 (Zhang et al. 2009) Let A and Bbe two CFSs on U, and
i, (x)=r,(x)-e “+and 4 (x) =r,(x) e > their =~ membership  functions,
respectively. The complex fuzzy union of 4 and B, denoted by 4 UB, is specified by a
function

oz (X)=r, z(xX)-e

iarg, p(x) imax(arg 4(x)., argg(x))

= max(r,(x), ry(x))-e

Definition 2.4 (Zhang et al. 2009) Let 4 and B be two CFSs on U, and
i, (x)=r,(x)-e “*“and g, (x) = r,(x) e = their =~ membership functions,

respectively. The complex fuzzy intersection of 4 and B, denoted by 4 n B, is specified by a
function
s (X) =7y ()€ 750 = min(r, (x), 1y, (x)) -/ ™SO e,

44



Definition 2.5 (Zhang et al. 2009) Letd be a CFS on U, and 4 (x)=r, (x)-e’ “=+ its

membership function. The complex fuzzy complement of 4, denoted by A, is specified by a
function

’uz(x)zrz(x).ei arg7 (x) =(1_’j4 (x )).ei(llrfwg_i(x)) .

Definition 2.6(Majiet al. 2001)Let U be an initial set and £ be a set of parameters. Let F(U)
denote the fuzzy power set of U, and let 4 — E. A pair is called a fuzzy soft set over U, where
F is amapping givenby FF: 4 —> F(U).

Definition 2.7 (Maji et al. 2001) The union of two fuzzy soft sets (F, 4) and (G, B) over a
common universe U is the fuzzy soft set (H, C), where C =4 UB and ¢ eC,
F(e) if eecd-B,
H(e)=4G(e) if eeB —4, Wewrite (F,4)v(G,B)=(H,C).
F)uGe) if eecdnB.

Definition 2.8 (Maji et al. 2001) Intersection of two fuzzy soft sets (£, 4) and (G, B) over
a common universe U is the fuzzy soft set (/7 , C), where

C=ANnBandVe eC, H(e)=F(e) or G(e)and is written as
F, AYNG, By=(H,C)-

Definition 2.9 (Maji et al. 2001) The complement of a fuzzy soft set (#, 4) is denoted by
(7, Ay andis defined by (F, 4)* =(F, —4), where F* : =4 — P(U) is a mapping given
by Fe(a) = (F(—a)), V—a cA.

Definition 2.10 (Nadia 2010) Let U be an initial set and £ be a set of parameters. Let P(U)
denote the complex fuzzy power set of U, and let 4 — E. A pair (F', A) is called a complex
fuzzy soft set over U, where F' is a mapping given by ¥ : A — P(U).

F(s,)={(h, r(x)-€"): j=# parameters and k =# sets and s, € A}.
4

Definition 2.11 (Cagman et al. 2011) Let U be an initial universe, P (U) be the power set of U,
E be the set of all parameters and X be a fuzzy set over E. An FP-soft set 7, on the universe U

is defined by the set of ordered pairs

Fy={(uy (x)/x, £ (x)) :x€E, f (x)e P(U), uy (x) [0, 1]},

where the functionf’ : E — P (U ) is called an approximate function such that
fy(x) = ifu, (x) = 0, and the function ,, . g —[o0, 1] is called a membership
function of FP-soft set /7, . The value of 4, (x)1s the degree of importance of the parameter

x , and depends on the decision maker’s requirements.

Definition 2.12(Cagman et al. 2011) Let F,, € FPS (U ). The complement of F, denoted

by Fy¢°, is an FP-soft set defined by the approximate and membership functions as
Moo (x) =1-u, (x) cmdec~ (x)= U\ fy (x)

Definition 2.13 (Cagman et al. 2011) Let F,, F, € FPS (U ). The union of Fy and F; ,
denoted by F U F,., is defined by

Hyoy ()= max{u, (x), 4 (x)tand £y, (x) = fy (x) O f; (x), forallx e E.
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Definition 2.14(Cagman et al. 2011) Let F, , F, € FPS (U ) The intersection F, and F; ,
denoted by F, [, is defined by
My (x) = max {,uX (x), My (x)}, and fy .y (x) = fy (x)me (x), forallx € E.

3. COMPLEX FUZZY PARAMETRISED SOFT SET

We introduce the definition of a complex fuzzy parameterised soft set which is a generalisation
of fuzzy parameterised soft set by extending the range of values of its membership function
from the interval [0,1] to the unite circle in the complex plane. Also, basic operations are

introduced.

Formal definition

In this section, we present the formal definition of complex fuzzy parametrized soft set.
Also, complex fuzzy decision set of an CFP-soft set is constructed to desine a proper decision
method.

Definition 3.1.1. Let U be an initial universe, P(U) be the power set of U, E be the set of all
parameters and X be a complex fuzzy set over E. A complex fuzzy parameterised soft set
(CFPSS) F, on the universe U is defined by the set of ordered pairs

F, = {(#x(x)x i fX(x)j :VxeE, f(x)e PU), p(x)e {a:aeC and |a| < 1}},

where the function f . £ — P ) is called an approximate function such that £ (x)=O
if 1, (x)=0-€" and the function , .gp {a]a eC and |a| <1} is called a

membership function of complex FP-soft setF, . The value of s, (x) is the degree of

importance of the parameter x in periodic time and depends on the decision maker’s
requirements.

The difference between our complex fuzzyparameterised soft set and the previous
fuzzyparameterised soft set of Cagman et al. (2011) lies in the ability to get wider range of the
degree of importance of x, by using the properties of complex numbers.

Notes (1). Both the amplitude and phase terms may convey fuzzy information. Fuzzy
information are characterized by a function from universe of discourse to [0, 1]. (Tamer et al.
2011).

(2). In this research we denote the set of all CFPSS over U by CFPS(U).

The new concept of complex fuzzyparameterised soft set is that the sets used in the definition
and example above is complex fuzzysoft sets and fuzzyparameterized soft set, characterized by
complex-valued membership functions, that given by Ramot et al. in (2002), Nadia’s in (2010)
and Cagman et al (2011), which allows us to use the properties of complex numbers, complex
fuzzysoft sets and fuzzyparameterised soft set.

We define complex fuzzy decision set of an CFP-soft set to construct a decision method by
which approximate functions of a soft set are combined to produce a single complex fuzzy set
that can be used to evaluate each alternative.

Definition 3.1.2. Let F, eCFPU). A complex fuzzy decision set of F, , denoted by
C ~F!(s)> is defined by
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278 4 (s
C~r (S):{/‘C~F<z ()= re 5 fs o eU},
which is a complex fuzzy set over U, its membership function z. ., (S ) is defined by
~Fx

M po ():U —{a:aeCand |o|<1},

0. a(x)

Cc-rd

X in i
”(;Fg( ) ' ”|SUPP()I )

'll g \8)= ) ° N 7( S(x (S)
on ( ) xesup p(X) |supp (X)| S0
% - ) i2x
where m,e’” lsupp() _ ( ; ro ( x)] ' elsupp(X)lzgf~F.i’- )
xesup p(X) |Supp (X)| |Supp (X) xesupp(X) e

wheresupp(X) is the support set of X. number of importance of parameter x. f, (x )is the

crisp subset determined by the parameter X and

Jlu e fy(x),
Zro()®) = 0u & fy(x)

4. BASIC OPERATIONS AND SOME RESULTS OF COMPLEX FUZZY
PARAMETERISED SOFT SET

" In this section, we introduce the concept of complement, union and intersection of a complex
fuzzyparameterised soft set by incorporating Zhang’s (2009) definition for complement of
complex fuzzy sets, Maji et al.’s (2001) definition for complement of fuzzy soft set and
Cagman et al.’s (2011) definition for complement of fuzzy parameterised soft set.

Definition 3.2.1.Let 7, € CFPS (U ). The complement 7, ,denoted by F, is a CFP-soft

set defined by the approximate and membership functions as

e ()= (17 ())& and £, (x) U\ £, (x)

Definition 3.2.2. Let F, ,F, e CFPS (U ). The union of 7, and F;, , denoted by F\, UF; ,
is defined by

F, UF, z{(ﬂ){uy(x)x , quY(x)j: er}

where

Lyoy (x)= [{max(rX (x). r (x))} .e““‘”‘x(a"(’”’eym)} and £, ,(x) = f (x)U f,(x), VxeE.

Definition 3.2.3. Let F, ,F, eCFPS (U) The intersection of F, andF, ,denoted by
F, NF, ,is defined by

F. NF, ={(ﬂXﬁY (XZ’fX“Y (x)j:x GE}

where
oy (x) = min(rX (x). (x)).e'mi“(‘g-"(x')’ “CN) and fy., (x) =fv (x)" fy (x), forallx e E.
Proposition 3.2.1. Let 7, < CFPS (U ).Then (FXC)" =F,.
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Proof : Trivial.

Proposition 3.2.2 LetF, , 7, , F, e CFPS (U ).Then

Fy UF, =F,. 2. F, UF,=F, UF,. 3. (F, UF,)UF, = F, U(F, UF,).
FyNF,=F,.5 F,NF,=F,NF,. 6. (F,"F,)"F, =F, "(F,NF,).
Proof: Trivial.

Proposition 3.2.3.Let F | F, € CFPS(U ) Then De Morgan’s Law are valid.
(Fe OF ) =F nE*.
(Fy NF, ) =F{ UFS.

Proof: Trivial.

Proposition 3.2.4.Let F  F  F, e CFPS U). Then
Fy U(F;/ sz)z(EY VE, )m(FX UFE, )
Fy ﬁ(E, UFZ)z(FX NF, )U(FX NF, )

Proof: Trivial.

5. Conclusion

In this research, we find out the new concept of complex fuzzy parameterised soft set, Also, we
introduce the basic theoretic operations on this new concept which are, union, intersection, and
complement on complex fuzzy parameterised soft set. Some propositions and relations on and
between these basic theoretic operations are introduced.
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ABSTRACT

Consider concentric circular arrays consisting of identical isotropic sensors. Concentric circular
arrays preserve circular symmetry of the simple circular arrays, while increasing the number of
spatial samples per each time instant. Direction of arrival (DOA) estimation is a key area of
sensor array processing which is encountered in a broad range of important engineering
applications. These applications include wireless communication, radar, sonar, among others.
This paper investigates direction-finding estimation accuracy through Cramer-Rao bound
derivation and analysis. It was observed that even with the same number of sensors, distributing
them in a number of concentric circular arrays improves estimation accuracy.

Keywords: array signal processing, direction of arrival estimation, direction finding, Cramer-
Rao bound

1. INTRODUCTION

Source direction-of-arrival (DoF) of the incoming signal from a single or multiple sources is an
important technique in sensor-array signal processing[ 1] and refers to the problem of estimating
polar-azimuth angles-of-arrival emanating from emitter(s); for example plane wave or multiple
plane waves [7]. The technique is also referred to as direction finding (DF) which has been
proven to play significant role in array signal processing, an important branch of signal
processing with a wide range of applications especially in the world of engineering. Some of
its application fields include: Sonar, radar, wireless communication, seismic systems, electronic
surveillance, medical diagnosis, radio astrology, among others [1, 12].

Achievement of direction finding in signal processing makes use of elements termed as
antennas or sensors either randomly distributed or arranged in the desirable geometric patterns
which are either linear, planar or 3-dimensional. For instance, the already investigated sensor-
array geometries in DF include uniform linear array(ULA), uniform rectangular array(URA),
uniform circular array(UCA), L-shaped array, regular tetrahedral array and circular concentric
array [7, 2, 13]. All these geometries are used to solve direction finding problems using different
algorithms such as Maximum likelihood (ML), MUItipleSIgnal Classification (MUSIC),
Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT), Cramer-Rao
bound (CRB) among other techniques. For example considering a uniform circular array (UCA)
geometry using CRB technique, this geometry has been investigated for direction finding in [8,
6, 3].

Importantly, each geometry aforementioned has its own advantages in DF. However, circular
and concentric geometries out-weigh the other geometries based on their wide range DF
advantageous allowances. Among these merits include: they offer full rotational symmetry
about the origin, they are flexible in array pattern synthesis and design both in narrow
band and broad band beam-forming applications, they provide almost invariant azimuth
angle coverage and they can also yield invariant array pattern over a certain frequency
band for beam-forming in 3-dimensions [5].

Exceptionally, circular concentric arrays have a little more advantages some of which include:
they offer less mutual coupling effect due to their significant structure of the ring array [16],
they yield smaller sidelobesinbeam-forming[16,14],
providehigherangleresolutioncomparedtouniformcirculararraygeometries and requires less
area for the same number of sensor elements [13] and they increase array’s spatial aperture [15,
9,5].

* Corresponding author
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Despite all the advantages of the circulararrays, they suffer from high side lobes in beam-
forming and thus a need arises to minimize/or reduce these side-lobes. Thus the strategy of
increasing the number of rings is hereby employed to reduce the effect of side lobes. Therefore,
the paper considers a multi-concentric ring array that preserves circular symmetry of the simple
circular array, while increasing the number of spatial samples per each time instant and offers
reduced side lobes with little/or no mutual coupling in direction finding. The paper further
verifies direction finding accuracy via Cramer-Rao bound derivation and analysis.

Finally, the paper is organized into six sections in which Section 1 is the introduction, Section
2 presents the statistical data model, Section 3 gives review of the Cramer-Rao bound basics,
Section 4 presents the Cramer-Rao bound derivation, Section 5 presents some special cases and
Section 6 gives the conclusion.

2. STATATISTICAL DATA MODEL

Consider N circular arrays with the n-th circular array of radius R,,, and containing L,, isotropic
sensors uniformly arranged on the circumference forn =1,---,N. Let R,, < R,41 and L, <
L,4+, forall n. See Figure 1.

Z

A

\4\
3
l.l.’]}[{l"llv? P1214 .[)7_,/'

Figure 1: An N-lingth Multi-Concentric Circular Array.

The location of the £t" sensor on the RE radius circular array is given by

T
P, = [Rncos <M) , Rpsin (@) ,0 l (D

n n

forY, =1,2,3,-,L,

Let 8 € (0,m) and ¢ € (0,27m) be the elevation and azimuth angles, respectively, of a source
with an incident wavelength A. Then, the array mainifold vector is given as

a,(0,)
ae,9) =| 2@
aN(é; ®)
where
[@n(8, $)]s,, = exp{j Zsin(6)cos (¢ — Z2=2)} (3)
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Consider a collected dataset {z(m),m = 1, 2,3, -+, M}, where m is the time index and

z(m) = a(6, $)s(m) + n(m) 4
isaYN_, L, x 1andn(m)isaYN_, L, x 1 vector modelled as a complex-valulued zero-mean
additive white Gaussian noise (AWGN) with a prior known variance of g2 and s(m) is a scalar
incident signal modelled as a white Gaussian complex-value random sequence with a prior
known variance of 62. The noise,{n(m), vm}is white both across time (m) and across space
(i.e across the components in the}N_, L, elements of each vector n(m) ).

3. REVIEW OF CRAMER-RAO BOUND BASICS

Let
z:=[{z(1)},{z(2)}", - {z(M)}']" =s @ a(6,¢) +7 (5)

be the dataset representing M number of discrete-time samples. In Eq. (5), superscript Tdenotes
transposition, @ denotes the Kronecker product and

= [S(l),S(Z),“',S(M)]T,
it = [(n(D}, (n(D}", -+, (n(M)}]".

Collect the two to-be-estimated scalar parameters as entries of the 2 X 1 vector & := [, ¢]. The
fisher information matrix (FIM), F(§) has a (k,r)-th entry equal to (see Eq. (3.8) on page 72 of

[4])

[F(O)lir = 2Re{ %]H r- a”} +Tr {r—l ar]H r—lﬂ}, (6)

&, 0 0y

where Re{-} signifies the real-value part of the entity inside the curly brackets, Tr{-} denotes
the trace of the entity inside the curly brackets, the superscript “indicates conjugate
transposition.

For the data’s statistical model,
p=E[Z] = s®a(b,¢) (7
F=E[Z-wz- H)H] = 0_1%11\4211\;1 Ln (3)

where E[-] represents the statistical expectation of the entity inside the square brackets and
I, yN_ Lnsyrnbolizes an identity matrix of size M Y N_; L,,.

Because I is functionally independent of both 8and ¢, as shown in Eq. (8), the second term
of Eq. (6) equals zero. Eq. (6) may be simplified to

_ 2 pef[au]” ou
[F(E)]k,r - o2 Re{ 0y afr},
where

ou1 op _ [S 290, ¢>l" ls & 290, ¢>)l

EI T 08y,
_ sHs @ Iaa(ﬁ ¢)l laa(&d))
Ryvpe’ 0k 0§,
da(6,9) 2a(6,9)
= Mo I ] FI ]
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1. Hence

2 3a(8,9)1" [9a(6.9)
[l = 2M% Re{[ 22" [2200))| ©)

The Fisher information matrix equals
Fop  Fo g

F , 10
© =50 £ (10)
the inverse of which gives Cramer-Rao bound off and ¢:
[CRB(B) ] B [Fe,e Fo¢ (an
The Cramer-Rao Bound Derivation
From Eq. (2), we have
da(0,¢) _ |[das(6, ¢) 3az(9.¢) H . 3a1v(9 $) ]
19" [[ 27" 27" ’ 29" ] (12)
where
cos(¢p)
T
a0, . cos|¢p——
220D = j 2 Rycos(6) ( : ) © au(6,9), (13)
cos ((j) — —2"(2;_1))
sin(¢)
. 2n
sin| ¢ ——

. 'Zn(fn—l)
sin (db L )
In Eq. (13) and Eq. (14), ©®denotes the Hadamard product.

From Eq. (12)-Eq. (14):

9a(6,¢)]" 9a(6,¢) <~ ([02.(6,9) ”aan(e,@
[ a6 20 -Z [ l

n=1
2T

=- (—) cos?(@) ¥N_, L,RZ, (15)

9a(6,$)]" 9a(6,¢) _ 0 ([0an (6, 9)]" 0a,(6,¢)
l d¢ 20 _Zl 00 d¢

=0, (16)

n=1

9a(6,$)]" 9a(6,¢) _ 0 ([0an(6, 9)]" 0a,(6,¢)
l T 3% ‘Zl 39 00
1/2m

—(—) sin2(@) ¥N_, L,RZ . (17)

2
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Using Eq. (15)- Eq. (17) in Eq. (9), we have

Fog = M(Z) (Z) cos?(0) Ny LuRE, (18)
Fop =0, (19)
Fyp=M (27")2 ((‘7’—71)2 sin2(0) ¥V_, L, R2. (20)
Using Eq. (18)- Eq.2(20) in2 Eq. (11), we have
.
CRB(6) = %(%) 2 (%) 2%, Q1)
CRB(H) =5 (5:) (2) 5o (22)

Special Cases

A Single Circular Array

From Eq. (21)- Eq. 222): ,
2

cnecn = (2 (2)' =22 &
2

cre@) =5 (3) (3) o @4

These results agree with the results obtained in [8, 6, 3, 11].

A 2-Circle Array
From Eq. (21)- Eq. (22):

12 2 ra,\%  sec?(0)

CRB() _H(E) (a_s) LyR2+L,R%’ (25)
_1(2 2 ra,\%  csc?(8)

CRB(¢) _H(E) (a_s) LyR2+L,R% (26)

These results agree with the results obtained in [11].

Equal Angular Spacing
To maintain equal angular spacing between any two consecutive sensors in each circular
array, let R,, = nR, and L,, = nL;. Then fromEq. (21)- Eq. (22):

CRB(6) = 2 ()’ (%)2 et 27)
CRB(¢) = (Zn)2 (‘(’I—")2 % 28)
Eq. (27)- Eq. (28) can be re- expressed as
M (52) CRB(O) = o (29)
2
M( "S) CRB(¢) = — % (30)
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Now, to compare signal’s direction of arrival estimation accuracy using different number of
rings for the concentric circular arrays, we will consider an equal number of sensors. As an
example, let the total number of sensors be considered be 60. In addition, let R; = 1.

A Single Circular Array
From Eq. (29)- Eq. (30) and using L; = 60 and R; = 1, we have

1 o sec?(0)

M (32 )CRB(G) === 31
1 o csc?(9)

M ( ) CRB((I)) 412 %60’ (32)

A 2-Circle Array
From Eq. (29)- Eq. (30) and using L; = 20 and R; = 1, we have

1 o sec?(0)
M( )CRB(Q) = (33)
1 o csc?(9)
M ( ) CRB(¢) = 4m2%180° (34)

Eq. (33)- Eq. (34) corresponds to L; = 20,L, =40,R; =1 and R, = 2.

A 3-Circle Array
From Eq. (29)- Eq. (30) and using L; = 10 and R; = 1, we have

1 o sec?(0)
M (/1 ) CRB() = 4m2x360’ (35)
1 o csc2(9)
M ( ) CRB(¢) 412%360 (36)

Eq. (35)- Eq. (36) corresponds to L; = 10,L, = 20,L3; =30,R; = 1,R, = 2, and R; = 3.

A 4-Circle Array
From Eq. (29)- Eq. (30) and using L; = 6 and R; = 1, we have

1 0, sec?(6)
M( )CRB(H) T an2x600’ (37)
1 o, csc?(6)
M ( ) CRB(qb) 4m2%600 (38)

Eq. (37)- Eq. (38) correspondsto L; = 6,L, =12 ,L3 =18,L, =24,R; =1,R, =2,,R; =
3andR, =4

It is clear from Eq. (31)- Eq. (38), that even with the same number of sensors, distributing
them in a number of concentric circular arrays improves estimation accuracy.

4. CONCLUSION

A multiple number of concentric circular sensor array grid referred here as multi-concentric
circular array has been proposed. The direction-of-arrival estimation accuracy using such a
multi-concentric circular array grid has been analytically determined through Cramer-Rao
bound derivation. It has been observed that the Cramer-Rao bound decreases with increase in
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the number of concentric arrays while maintaining the same number of sensors. This
observation would help direction finders to economically utilize a given number of sensors.
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ABSTRACT

In this paper, based on some famous previous conjugate gradient methods, a new hybrid
conjugate gradient coefficient was proposed for unconstrained optimization. The proposed
parameter BT is computed as a combination of BFS (Hestenes-Steifel formula), B=5 (Liu —
storey formula) and BRMX (Rivaie formula) to exploit attractive features of each. The algorithm
uses the exact line search. Numerical results and their performance profiles are reported which
show that the proposed method is promising. The numerical results also have shown that the
new formula for 5, performs far better than the original Hestenes-Steifel, Liu —storey and the

Rivaie methods.

Keywords: Hybrid conjugate gradient method; exact line search; unconstrained optimization.

1. INTRODUCTION

Conjugate gradient methods (CGMs for short) are very efficient for solving large-scale
unconstrained optimization problem, especially when the dimension 7 is large. CGMs have
been mainly designed for solving problems in the following form:
min f(x), x € R" (1)
where f: R™ — R Is continuously differentiable function, the form of iterative method to
solve unconstrained optimization problem is given by
Xk+1 — Xk + akdk k= 0, 1, 2 (2)
Where x, is the current iterate, a, is the positive step size achieved by carrying out a one
dimensional search, known as the ‘line searches’. The most common is the exact line search
which is

f Qo+ apedy) = 755 f (o + a dy) (3)
and dj, is the search direction defined by
e = {_gk + Brdi-1, ifk=1, @

where [}, a parameter and gy, is the gradient of f(x) at x.

In the linear CGMs or nonlinear CGMs the parameter S is called conjugate gradient
coefficient [27]. Different choices of S} will yield different CG method. Table 1 arranges a
sequential list of some choices for the well-knwon CG parameter.

56



Table 1. Various choices for the classical CG parameter

HS — 9k W-gien) (Hestenses —Stiefel [13], 1952) )
k (gk;gk—1)Tdk—1 ’
PR = _Jidk (Fletcher —Reeves [11], 1964) (6)
Ik-19k-1
Teg,—
BERP = % (Polak-Ribiere —Polyak [21, 22], 1969)  (7)
k-19k-1
T
BEP = HFedk (Conjugate Descent [10], 1987) (8)
di—19k-1
Teg, —
LS = _ 9k 0k=1) (Liu —storey [19], 1991) (9)
di_19k-1
T
DY — __ Jkdk (Dai —Yuan, [6], 1999)

(Gr=9r-1)Tdr-1

(10)

There are frequent research on convergence properties of these methods (see Zoutendijk
[27], Powell [23], Z.Wei [25], Zhi- Feng Dai [5], Al-Baali [2], Min Li [18] and Dai and Yuan
[7D).

For non-quadratic objective functions, the global convergence property of FR method was
proved [11, 27], when Strong Wolfe line search was used. The PRP method has no global
convergence under some traditional line searches. Some convergent versions were proposed by
using some new complicated line searches, or through restricting the parameter to a nonnegative
number [18]. The CD method and DY method were proved to have global convergence under
Strong Wolfe line search [5, 25]. However, to the best of our knowledge, the global
convergence of PRP, LS and HS methods have not been established under all mentioned line
searches. The main reason is that many CGMs cannot guarantee the descent of objective
function values at each iterative.

In the latest years, based on the above formulas and their hybridization, many works putting
effort into seeking for new CGMs with not only good convergence property but also excellent
numerical effect were published. Nazareth [20] regarded the FR, PRP, HS, and DY formula as
the four leading contenders for the scalar §;, and proposed two parameter family of conjugate
gradient method. Wei et al [25], proposed a variation of the FR method which is called the VFR
method.Hai Huangm, et al [16] modified LS,Zhi- Feng Dai [5] modified HS and Zhang
extended the result of the HS [17] method and proposed the NHS method. Another famous CG
method is the RMIL method, denoted by the name of the researchers: Rivaie, Mustafa, Ismail
and Leong [24]. Its CG coefficient is written as

RMIL _ 9k (9k=9k-1)
ko =TT 4 (1)
k-1%k-1

Some well-known CGMs have strong convergence property like FR, DY, and CD, but they
may not perform well. Others like PRP, HS, and LS may not converge but they perform well.
So hybrid CGMs has been devised to use and combine the attractive features of the well-known
conjugate gradient algorithms.This reason leads Powell [23] to modify the PRP method.By the
same motivations, Touati-Ahmed and Storey [1] extend AL-Baali’s [2] convergence result on
the FR method.DY,Dai and Yuan [7] propose a family of globally convergent conjugate
methods. A new hybrid CG is considered by Djordjevi¢ [8] wehre the conjugate gradient
parameter 3 is computed as a convex combination of BE and BES.Hu and Storey [15]
suggest the formula

BHHUS = max {0 ,min {BERP ,fR}} (13)
Gilbert and Nocedal [12] extend (13) and propose the formula
HON = max {~BER  min {BEFF, pER)] (14)
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Recently Xiao Xu and Fan-yu Kong [26] make a linear combination with parameters f3), of
the DY method and the HS method.More recently Yasir [28] proposed a new hybrid CG similar
to WYL.

2. NEW HYBRID CG METHOD

During the last years, much massive conducted effort has been committed to develop new
modifications of CGMs, as we mention before, which do not only possess strong convergence
properties, but they are also computationally superior to the classical methods. As result to that
hundreds of variants Conjugate Gradient algorithms have been confirmed. A survey including
40 nonlinear Conjugate Gradient algorithms for unconstrained optimization is given by Andrei
[4].

In this section, enlightened by above-mentioned ideas [12, 13], we suggest our 8, which
named as BET™". Where HT M *represents Hybrid Tala’t and Mustafa.

*
gTM =max{ fMIL,min{ iS, ZIS}} (15)

The algorithm is given as follows:

Algorithm 1

Step 1: Initialization. Given x, € R™, ¢ >0, setdy, = —g, if |lgoll < € then stop.
Step 2: Compute a;, byEq. (3).

Step 3: Let Xg41 = X + @ di , Gkr1 = 9(Xk+1) i |G+l < € then stop.

Step 4: Compute 8, by (15), and generate dj,; byEq. (4).

Step 5S:setk = k+ 1 go to Step 2.

Global convergence properties

In this section, the convergent properties of ™" will be studied. We only show the result of
convergence for common CG method. To verify the convergence, we assumed that every search
direction dj, should fulfill the descent condition
g,fdk <0 (16)
forall k > 0.
If there exist a constant A > 0 for all k > 0 then, the search directions satisfy the following
sufficient descent condition

gkdi < —Algill? (17)

The following Theorem is very essential in establishing sufficient descent condition.
Theorem: Consider a CG method with the search direction (4) and ﬁgTM given as
(15) then condition (17) holds for all k > 0.

Proof. If k = 0 then it is clear that g}d, = —/1||gk||2. Hence, condition (17) holds
true. We also need to show that fork > 1 , condition (17) will also hold true.
From (4), multiply both sides by g7, , we obtain

Gir1is1 = Gia1(k+1 + Brardi)

= ~llgrs1ll* + Brs1Gi+1dk
For exact line search, we know that g7, ;d, = 0. Thus,

T — 2
Ik+19k+1 = —llgr4 l
Therefore, it implies that dj,.1 is a sufficient descent direction. Hence,

Ikdi < —Allgill?
holds true. The proofis completed(].

58



3. NUMERICAL RESULT AND DISCUSSION

In order to check the efficiency of HTM", we compare HTM™ method with all classical methods
. Table 2 shows the computational performance of R2015a MATLAB program on a set of
unconstrained optimization test problems. We select randomly 25 test functions from Andrei
[3]

In this test, we choose € = 107° and stopping criteria is set to ||gi|| < € as Hillstron [14]
recommended. Three initial points are chosen starting from a point closer to the solution point
to a point far away from the solution point, so that it can be used to test the global convergence
of the new CG coefficient. The dimensions n of 25 problems are 2, 4, 10, 100,500 and 1000.

In some cases, the calculations blocked due to the failure of the line search to find the
positive step size, and thus it was considered as a fail. Numerical results are compared
comparative to the number of iteration (NOI) and CPU time. We use the performance profile
presented by Dolan and More [9] to get the performance results that shown in Figure 1, Figure
2, Figure 3 and Figure 4.

The CPU processor used was Intel (R) Core TM 13-M350 (2.27GHz), with RAM 4 GB.

Table 2. List of Problem Functions

NO Function Dim Initial point
1 SIX HUMP CAMEL 2 (-1,-1), (3,3), (50,50)
2 TRECCANI 2 (0.5,0.5),(15,15),(150,150)
3 ZETTL 2 (-2,-2),(0.3,0.3),(5.5)
4 QUARTIC 4 (10...,10),(50,..,50),(100,..,100)
5 EXTENDED HIMMELBLAU 4 (-4,..,-4),(-1.5,..,-1.5),(1,..,1)
6 EXTENDED MARTOS 10 (-2,..,-2),(0.5,..,0.5),(2,..,2)
7 QUADRATIC QF2 100,500,1000 (1,..,1),(15,..,15),(60,..,60)
8 GENERALZED QUARTIC 100,500,1000 (-0.5,..,-0.5),(1,..,1),(6,..,6)
9 WHITE AND HOLST 100,500,1000 (-2,..,-2),(2,..,2),(9,..,.9)
10 FLETCHCR 100,500,1000 (-4,..,-4),(3,..,3),(11,..,11)
11 ROSENBROCK 100,500,1000 (5...,5),(25,..,25),(30,..,30)
12 EXTENDED DENSCHNB 100,500,1000 (1,..,1),(16,..,16),(25,..,25)
13 EXTENDED BEALE 100,500,1000 (0.5,..,0.9),(2,..,2),(11,..,11)
14 EXTENDED TRIDIAGONAL 100,500,1000 (3,.,3).09,..,9),(50,..,50)
15 DIAGONALA4 100,500,1000 (0.2,..,0.2),(60,..,60),(200,..,200)
16 SUM SQUARES 100,500,1000  (-1,..,-1),(60.,..,60),(150,..,150)
17 SHALOW 100,500,1000 0.2,..,0.2),(3...,3),(30,..,30)
18 PERTURBD QUADRATIC 100,500,1000 0.5,..,0.9),(2,..,2),(12,..,12)
19 DIXON AND PRICE 100,500,1000  (0.2,..,0.2),(0.4,..,0.4),(16,..,16)
20 QUADRATIC QF1 100,500,1000 (1.5,..,1.9),(5,..,5),(20,..,20)
21 NONDIA 100,500,1000 @3.,..,3),(7.5,..,7.5),(50,..,50)
22 DQDRTIC 100,500,1000  (10.,..,10),(60,..,60),(100,..,100)
23 SINQUAD 100,500,1000 (4,..,4),(20,..,20),(60,..,60)
24 GENERALIZED QUARTIC GQ2 100,500,1000  (0.5,..,0.5),(15,..,15),(25.,..,25)

25 EXTENDED QUADRATIC PENALTY QP2  100,500,1000 (1,..,1),(10...,10),(50,..,50)

In [9] Dolan and More offered a model to evaluate and compare the performance of the set
solvers S on a test set P. Assuming ng solvers and n,, problems exists, for each problem p and
solver s, they defined

tp,s = computing time (NOL or CPU time) required to solve problemsp by solver s.

Wanting a standard form for evaluations, they compared the performance of problem p by
solver s with the best performance for any solver to the same problem using the performance
ratio

1
min{tp,s :s €S}
Assume that a parameter 1y = 15,V p,s is selected, and 7y = 7,5 if and only if solver s
does not solve problemp. The performance of solver s on any given problem might be of

Tos
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concern, but because we would like to achievement an overall valuation of the performance of
the solver, then it was defined

1
ps(t) = n—{p € Py <t}
12

Thus p, (t)is the possibility for solver s € S that a performance ratio 7, ¢ was within a factor
t € R of the best possible ratio. Then, functionp, is the cumulative distribution function for the
performance ratio. The performance profile p;: R — [0,1]for a solver was a non-decreasing,
piecewise, and continuous from the right. The value of pg(1)is the possibility that the solver
will earn over the rest of the solvers. In general, a solver with high values of P(7)or at the top
right of the figure is superior or signify the best solver.

Ps(t)

—-cD
— - HTM

0.0
e? e e? e’ et e® e®

Figure 1: Performance profile based on NOI

Ps(t)

— RMIL
— — HTM

0.0
e e’ e?

Figure 2: Performance profile based on NOI
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Ps(t)

—— HTM

0.0

el e! e? e3 et e’ eb
t
Figure. 3: Performance profile based on CPU time

PS(t)

Figure. 4: Performance profile based on CPU time

Figures show the performance profile of all methods we used based on NOI and CPU time.All
figures illustrate that HT M ™ perform better than the other methods, since it can solve almost all
of the test problems and reach 99% percentage. Comparing with DY, FR, CD, PRP, HS, LS
and RMIL that don’t exceed 81%, 90%, 92%, 96%, 86%, 92%, 94% respectively in solving the
given test problems. To sum up, our numerical results propose a new efficient conjugate
gradient method.

CONCLUSION

In this paper, the resecher have studied a new hybrid method for solving unconstrained
optimization. Hedisplayed that the new method fulfills the sufficient descent condition under
exact line search. The outcome of the numerical tests shows that the given method is modest
when compared to other CGMs. In future, testing this new method under different search rules
is recommended.
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ABSTRACT

Using a discretization approach, the existence of solutions for a class of second order differential
inclusion is stated. The right hand side of the problem is governed by the so-called nonconvex
state-dependent sweeping process and contains an unbounded perturbation, that is the external
forces applied on the system. Thanks to some recent concepts of set's regularity and nonsmooth
analysis, we extend existence results for nonconvex equi-uniformly subsmooth sets. The
construction is based on the Moreau's catching-up algorithm. We give an application to the
antiplane frictional contact problem, where the friction is modeled by Tresca’s law.

Keywords: Differential inclusion; nonconvex sweeping process; subsmooth sets; unbounded
perturbation

1. INTRODUCTION

The perturbed second order state-dependent nonconvex sweeping process is an evolution
differential inclusion governed by the normal cone to a mobile set depending on both time and
state variables, of the following form:

—u(t) € NQ(t‘U(t))(u(t)) + F(t,u(®),v(), a.e teo,T]
v(t) = b+ [ju(s)ds,  Vte€[0,T];

u(t) = a+ [ju(s)ds,  vte[o,T];
u(t) € Q(t,v(t)), vt €[0,T],

(P)

where No(t,v(t))(u(t)) denotes the normal cone to O(z, (7)) at the point u(?), the sets O(z, v(2))
are nonconvex in Hand F: [0, T] x H x H — H is an upper semicontinuous convex valued
mapping playing the role of a perturbation to the problem, that is an external force applied on
the system. This kind of problems was initiated by J.J. Moreau (see [14]) for time-dependent
sets O(¢) and F = {0} to deal with problems arising in elastoplasticity, quasistatics, electrical
circuits, hysteresis and dynamics. Since then, various generalizations have been obtained, see
for instance [4-9, 16-18] and the references therein.

When the moving set QO depends also on the state, one obtain a generalization of the classical
sweeping process known as the state-dependent sweeping process. Such problems are
motivated by parabolic quasi-variational inequalities arising e.g. in the evolution of sandpiles,
and occur also in the treatment of 2-D or 3-D quasistatic evolution problems with friction, as
well as in micro-mechanical damage models for iron materials with memory to describe the
evolution of the plastic strain in presence of small damages. We refer to [12] for more details.
By means of a generalized version of the Shauder’s fixed point theorem, Castaing, Ibrahim
and Yarou [9] provided an approach to prove the existence of solution to (P). The approach is
based on the Moreau’s catching-up algorithm. For recent results in the study of state-dependent
sweeping process, we refer to [1], [2], [11].

Our aim in this paper is twofold: using some recent concepts of set's regularity, we show how
the approach from [9] can be adapted to yield the existence of solution for (P) with the general
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class of equi-uniformly subsmooth sets Q(t, x). Moreover, we weaken the usual assumptions on
the perturbation by taking F unnecessarily bounded and without any compactness conditions.

2. NOTATION AND PRELIMINARIES:

We denote by B the unit closed ball of the Hilbert space H, C g ([0, T ]) the Banach space of
all continuous mappings u : [0, T ] — H endowed with the norm of uniform convergence. For
a nonempty closed subset S of H, we denote by d(-, S) the usual distance function associated
with S, Projs(u) the projection of u onto S defined by Projs(u) = {y € S : d(u, S) = l[lu — ylI}.
We denote by co(S) the closed convex hull of S, characterized by co(S) = {x € H: V x' € H,
(x',x)< 6%(x,S)}, where §™(x',S)= Supyes(x',y) stands for the support function of S at x’ € H.
Recall that for a closed convex subset S, we have d(x,S) = Supy,eg[(x',X)—3"(x',S)]. A subset
S is said to be relatively ball compact, if for any closed ball B(x, r) of H,the set B(x, r) N S is
relatively compact.

If ¢ is a locally-Lipschitz function defined on H, the Clarke subdifferential ¢ p(x) of ¢ at x is
the nonempty convex compact subset of H, given by

0% ()= { ¢ EH: po(x;v) = (Ev) WEH),
ey +tv) — o)
t

where @o(x; V) = lim,,_,Supgo is the generalized directional derivative of

¢ at x in the direction v (see [10]). The Clarke normal cone N ¢ (S, x) to Satx €Sis defined by
polarity with T, that is, N¢(S, x) = {¢ €H: (£, v) <0, Vv €T¢}, where TE denotes the Clarke
tangent cone and is given byT¢= {v € H: d"(x, S; v) = 0L

A vector v € H is said to be in the Fréchet subdifferential % p(x) of ¢ at x (see [15]) provided
that for every ¢ >0, there exists 0 >0 such that for all y € B(x, 9)

(b, y=x)< 00) — o) + el — /.

It is known that, we have always 07 p(x) c 0p(x), and for all x €S, NF(S, x) cN(S, x)
and 0Fd (x, )= NF (S, x) N B. Another important property is that, whenever y EPT0j¢(x),one
has x —y ENF (S, y)=x—y ENC (S).

Let Q be a closed subset of H, we say that Q is subsmooth at x € Q, if for every ¢ >0 there
exists 0 >0 such that

(17 &2 X137 x2)2 — & llxg — Xl (1)
whenever x;, X, €B(x, 5) N Qand & ENC (2, x;) N B, i =1,2. The set Q is subsmooth, if it
is subsmooth at each point of Q. We further say that Q is uniformly subsmooth, if for every ¢
>0 there exists 0 >0, such that (1) holds for all x;, x, € satisfying llx; — x;lI<dand all ;€
N€¢ (2, x;)N B.
Definition 2.1 Let (5(q))qeq be a family of closed sets of H with parameter q € Q. This family
is called equi-uniformly subsmooth, if, for every € > 0, there exists 6 > 0 such that, for each q
€ Q, the inequality (1) holds, for all x;, x,€ S(q) satisfying llx; — x,1I< & and for all §;ENC
(5(q), x;) N B, i=1,2. For the proofs of the next proposition, we refer the reader to [3] and
[19].
Proposition 2.2 Let {C(t, v) : (t, v) € [0, T]xH} be a family of nonempty
closed sets of H which is equi-uniformly subsmooth and let a real m > 0.
Assume that there exist real constants L;> 0 and L,> 0 such that, for any X, y,u, v € Hand s, t
€10, T]

|d(x, C(t, u)) — d(y, C(s, V)| < lIX = yll +L;1[t —s| + Lyllu— VIl

Then the following assertions hold:
(a) For all (s, v; y) € Gph(C), we have n od(y, C (s,v) € n B;
(b) The convex weakly compact valued mapping (t, x, y) — 0d(y, C (t,x) satisfies the upper
semicontinuity property: For any sequence (s,), in [0, T] converging to s, any sequence
(v, )nconverging to v, any sequence (y,,)pconverging to 'y € C(s, v) with (y,, € C(sp,, vy,), and
any & € H, we have
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lim supn_.eo 0(& M 8d(Yn, C(Sn, ) < 6(E, 1 2d( 'y, C(s.v))).

3. MAIN RESULT

Theorem 3.1 Let Q : [0, T]xH — H be a set-valued mapping with nonempty values satisfying:

(Qq) the family {Q(t, x); (t, x) € [0, T] x H} is equi-uniformly subsmooth;

(Q,) for any bounded subset A € H, the set Q([0, T] x A) is relatively ball compact;

(Q3) there are real constants A> 0, and A,> 0, such that for all t, s € [0, T] and x;, y;, ;€ H
|d(z1, Q(t, X1) = d(zz2, Q(t, X2)| < llZg = Zll + Aq [t =8| + Azllxg — X2l

Let F: [0, T] x H x H — H be an upper semicontinuous set-valued mapping with nonempty

closed convex values such that:

(F,) for some real x> 0 and for all (t, x, y) € [0, T] x H x H, d(0, F(t, x, y)) <«(1 + lIxIl + llyll).

Then, for every (a, b) € H x H with a € Q(0, b) there exists a Lipschitz

continuous solution (u, v) to (P).

Proof.

Step 1: for each (¢, x, y) €0, T] x H x H, denote by m(z, x, y) the element of minimal norm of

the closed convex set F(¢, x, y) of H, thatis m(2, x, y) = Projp(tx,y) (0). For every n > 1, we

consider a partition of [0, 7] by the points tj;= ke, €,= % k=012, ..., n.
Starting from ug = a €Q(0, b) = Q(tg, v) and taking uy' € Projqnyny (Ug — e, m(ty,

ugvy)) thanks to the ball compactness of the set Q(t1', v{), let define inductively the
sequences (Uj)g<k<nand (V) o<k<n satistfying

U1 € Q(tRyq, Vi) (2)
Uger1 € Projoen,  wmy (Ug— en m(ty, ugvy)) 3)
Vi1 = Vit en Upyq 4

ks = well < Agen + Apllvg — vi_g Il + 2e, Im(t , uge , vl
lvg — vl < ey llugll
and
Il < ((Ag +2 k(1 + IVFI)T + llufll) eT e +2x@+2T) = A,
. . Il <llvdll+ TA=Y
M <Ay +AA+ 2K (1+ 1021+ (T + DA) = ©. (5)
n
Step 2: construction of approximate solutions U,(*) and v, (*). Forany t € [t} ,tZ1],
k<n -1, we define
Un(t) = v+ (t = T Ui sq
and

_tigg—t o tot
un(t)_ en Ut en

“URir
Thus, for almost all ¢ €ttt ], Un(?) = uk*;—_ukand
~Un(1) ENgn, v (uks1) +mitg,ug, vi)
Using the notations
ty if t €[ty ty
P (6) = { tl; f ” [tk_ ;+1[
n-1 =
We can write
_un(t) ENQ(qn(t) ,vn(pn(t)))(un(Qn(t) ) ) + m(pn(t)a un(pn(t)) ’ vn(pn(t)) )
for a.e. ¢t €0, T]. Obviously, for all » > 1 and for all # €0, 7], the following hold:
Il m(pp(t), Un(Pn (D), Vo (Pn (D) DSk (I+llvgl+(T+) A) = A
Un(2(8)) € Q@ (1), vn(Pn(®)))
t
Vp() = b+ [[un(p,(s))ds, V€[0, T].

ty if t € [te teeql
and (1) = { k:}l v =kT k+1
n .
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Thanks to the ball compactness assumption and by Ascoli’s Theorem, (u,(*)) is relatively
compact in Cy([0, T']), so we can extract from it a subsequence, that we do not relabel, which
converges uniformly to some mapping u(-) € Cyx([0, T ]). By the inequality (5) there exists a
subsequence (again denote by) (it,(.) ) which converges o(L}([0, T 1), L3([0, T']) ) in
LYL([0,77), to uwith la(t) Il <© a.e. t €0,T].

Putting m(py (), Un(Pn()) , Va(Pn()) )= (fu()),( fo() is bounded, taking a subsequence
if necessary, we may conclude that ( f;,(*)) converges o(L% ([0, T 1), LE([0, T ]) ) to some
mapping f €LY, ([0,T]) with If(t)]l < A.

Step 3: the limit satisfies the inclusion.Using Mazur’s theorem and Proposition 2.2, we can
conclude that

_ﬁn(t) ENQ(t,V(t))(u(t)) + f(t) a.e. tE[O, T]
f(t) €F (1, u(t), v(t) ae. t€[0,T].
O

4. APPLICATION

As an application, let consider the antiplane frictional contact problem, the friction being
modeled with Tresca’s law, the classical model of the process is the following:
Find a displacement field u : Q x [0, 7] — R such that

div (IVu+ OVu) + fo = 0 in Q x (0< 7)<

u=10 on Lix (0< 7)<
[0,0+ A0, u = fon Ix (0< 7)<
|00, it + po,ul <g
00,11 + po, u= —gl%l if w#0
#(0) = upin Q

on Iy (0 7)¢

We refer to [13] for the physical interpretation and the following variational formulation of the
problem:
Find #: 7:= [0< 7] — R%such thatii(#) €l a.e. # €/ andV v €T

au(f)cv=u(d) + ou(?)), v=u(?) + Av) = AW(?)) 2 <A ud))v-u(2) >
“(0) = uy€R%«
where a(, -) and b(-, -) : H x H — R are two real continuous bilinear and symmetric forms.
See also [1] for a similar problem. Following [1], one proves the equivalence between this
variational inequality and the perturbed state-dependent sweeping process.
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ABSTRACT

Finding the solution of the equation f(x)=0 when f(x) is nonlinear is very important, as like this
equation resulting out from many real life problems and applied sciences. Many iterative
methods were proposed to solve nonlinear equations. These methods can be compared using
different ways, for example; their convergence order, number of functions needed to be
evaluated in each iteration, number of iterations needed for convergence, the CPU time required
to achieve the accuracy needed, and efficiency index. In this work we use another way called
the basins of attraction of the method. We consider six different methods of different orders and
graph the attraction basins of the roots of several polynomials. Finally, we clarify the answer to
the question: are the optimal methods always good for finding the solution of the nonlinear
equations?

Keywords: Basin of attraction; Nonlinear equations; Iterative methods

1. INTRODUCTION

Let f(x) be nonlinear, solving the equation f(x) = 0 has been studied very widely, see for
example [3-5,7] and the references therein. Besides, one of the most common ways to compare

1

the efficiency of iterative methods is the efficiency index which can be determined by gr, where
q is convergence order of the iterative scheme and r represents number of functions needed to
be found at each iteration. Kung and Traub[2] mentioned a conjecture says that the iterative
scheme with number of functional evaluations equals r is optimal if its order of convergence
equals 2”71, There are many ways to compare the efficacyof the iterative methods. The
attraction basins for complex Newton's method firstly considered and attributed by Cayley[1]
is a method to illustrate how different starting points affect the behavior of the function. In this
way, we can compare different root finding methods by their area of convergence shown by the
attraction basins of the roots. Based on that, the iterative method is better if it has larger area of
convergence. Stewart [6] compared Newton method, Halley's method, Popovski method, and
Leguerre method by showing the attraction basins of the zeros found by the methods. Many
researchers have compared different orders iterative methods for finding multiple zeros when
their multiplicity is known.

In this work we compare six different iterative methods by illustrating their attraction basins.
Three of the compared iterative techniques are optimal. We try to answer the question: are the
optimal schemes always good for solving nonlinear equations? The work in this study is divided
as follows: we illustrate some definitions and preliminaries in Section 2. In Section 3, the basins
of attractions were used to compare six different iterative methods on some polynomials.
Eventually, the conclusion given in Section 4.

2. PRELIMINARIES

Firstly, let’s start with some preliminaries and definitions which are related to the subject

* Corresponding author
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of basins of attraction.

If f(x¢) = X, then X is called a fixed point. For x € C, where C is the Riemann sphere,
we define its orbit as orb(x) = {x, f(x), fl21(x), ..., fM(x), ...}, where fI* is the nt?
iterate of f. xq is called a periodic point of period n if n is the smallest number such that
™ (xg) = x¢. If x4 is periodic of period n then it is a fixed point for f®1. A point xq is
said to be attracting if | f ’(xo)l <1, repelling if | f ’(xg)l >1, and neutral if
| f ’ (x0)| = 1. Moreover, if the derivative is zero then the point is called super-attracting.

The Julia set of a nonlinear function f(x), denoted by J(f), is the closure of the set of
its repelling periodic points. The complement of J(f) is called the Fatou set F(f). If O is an
attracting periodic orbit of period m, we define the basin of attraction to be the open set 4 €
C consisting of all points x € C for which the successive iterates fI™(x), FIZ™(x), ...
converge towards some point of 0. In symbols, we can define the basin of attraction for any
root & of f to be B(a) = {x¢ |1lll_)nolo ™ (x¢) = a}. The basin of attraction of a periodic orbit

may have infinitely many components. It can be said that basin of attraction of any fixed
point tend to an attractor belonging to Fatou set, and the boundaries of these basin of
attraction belongs to the Julia set. While an n order complex polynomial with distinct roots
partitions the complex plane into m number of basins, the partitions may or may not be
equally distributed or even connected for that matter. In an ideal setting, these attracting
regions resemble a Voronoi diagram showing all points that are the nearest neighbors to the
polynomial’s zero. See 1[6].

3. NUMERICAL EXAMPLES

In this section we will compare various root sinding methods by visualizing the basins
of attraction of their zeros. All examples are about polynomials with roots of multiplicity
one. We will consider six methods of different orders of convergence. Two of them were
considered by Stewart [6]. The methods we consider with their order of convergence are:

f(xn)
f(xa)

1. Newton’s Method: It is of order two, and given by x,,,1 = X,, —

2. Halley’s Method: It is of order three, and it is given by

2 G
Tt = Xn = = o) [ o)

3. Jarratt’s Method:It is a two step method of order four, given by

)y x2S
T 3 ()
f(xn)
_ 1f(x,) 1 ' ()
Xpt1 = Xp—= - = ; .
n n2f(x,) 21+% ;,Eyn;_l)
Xn

4. Xiaofeng-Wang Method (XW): It is of order four method of three steps [8], for 4 =
0.1 the method is given by
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S(xn)

In = T )
(zn - xn)z
\Vn =2, — 10
o — g fO)
U 2 X Yl — F ()

f(xn)— f(}’n)

where f[x,, Y] = p—

5. MBM Method: It is an optimal three steps iterative method of order 8[3]. For # = 0
the method is given by

S )

S {C M)

_ f(xn) f(Ya)
1Zn =Yn—

fn) = 2f () [/ (x0)’
_ f(z,) u(-8v-5)—v*+2v-5
Xn+1 = Zn — f,(xn) 12v — 5

),

;E "; and v = }f’gyni The first two steps of this method represents the well-

known Ostrowski’s method.

where u =

6. Srivastava Method (SM): It is a method of order 15[5]. The method is given by

o fOw
Yn=Xn =Py
f(yn) fom)
1

= In T [ + f(xn)) f'om)’
f(zn)

=g S TGy
ntl T A ) f'(zn)

In the following are examples of different polynomials with different coefficients of
different orders, we will plot the basins of attraction of the roots of these polynomials using
the methods mentioned above.In all examples, a 4 by 4 square region is centered at the origin

covering all the zeros of the tested polynomials.

A 400x400 uniform grid in the square is taken to unfold initial points for the iterative
methods via basins of attraction. Each grid point of a square is colored according to the
iteration number for convergence and the root it converges to. The exact roots were assigned
as a black points on the graph. The appearance of darker region shows that the method
requires a fewer number of iterations.All calculations have been performed on intel Core 17-
3770 CPU @3.40 GHz with 4GB RAM, with Microsoft Windows 10, 64 bit based on X64-

based processor. The software used to do the graphs is Mathematica 9.
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Example 3.1Consider the polynomial f;(x) = x3 —1 which has roots 1, —0.5 +
0.866025i.The basins of attraction for each root were illustrated in Figurel. As it can be
seen, Halley’s method attains larger area of convergence, followed by Jarratt’s, XW and
Newton’s methods, while MBM and SM methods show more chaos.

Figure 1. The basins of attraction of the roots of the polynomialf; (x) = x3 — 1.
The top row from left to right: Newton's, Halley's, Jarratt's.
The below row fromleft to right: XW, MBM and SM methods.

Example 3.2 The second example is the polynomial f(x) = x* — %xz + % which has four

simple real roots x = +1,40. 5.1t is clear from Figure2 that Newton’s, Halley’s, Jarratt’s
and XW methods give better results than MBM method. The worst result was for SM
method where a lot of black (Divergent) points appeared.

Figure 2: The basins of attraction of the roots of the polynomialf, (x) = x* — %xz + i.

The top row from left to right: Newton's, Halley's, Jarratt's.
The below row fromleft to right: XW, MBM and SM methods.
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Example 3.3 The four roots of unity polynomial f3(x) = x* — 1 has the roots x =
+1, +i.The results from Figure3 show that Halley’s method gave the best results with larger
area of convergence, followed by Jarratt’s, XW and Newton’s methods. Again, MBM and
SM methods show more divergent points.

Figure 3: The basins of attraction of the roots of the polynomial f5(x) = x* — 1.
The top row from left to right: Newton's, Halley's, Jarratt's.
The below row fromleft to right: XW, MBM and SM methods.

Table 1 presents the CPU time needed to obtain the basins of attraction of the roots of
the examples considered. It is clear that there is a relation between the CPU time and the
chaos in the graph, that is, less time tends to larger area of convergence and less chaos, and
vice versa.

Table 1: CPU time needed in seconds.

Method A () f2(x) f(0)

Newton 6.69 7.52 7.88
Halley 5.61 6.5 6.2
Jarratt 5.63 6.53 6.44
XW 19.89 6.83 21.39
MBM 238 59.94 58.06
SM 31.98 34.14 48.45

3.1. How good are optimal methods for nonlinear equations?

According to the conjecture of Kung and Traub[2], from the six compared iterative methods
mentioned above, we have three optimal methods, Jarratt, XW, and MBM methods. Its clear
from the basins of attraction of these methods that if the iterative method is optimal then it is
not essential that it has better attraction basins (larger area of convergence), see MBM attraction
basins in all examples. Also, if two optimal methods are of the same order, then its not necessary
that they have the same basins of attraction. Both Jarratt's method and XW method are optimal
of order four, but Jarratt's method is look like that it has larger area of convergence than XW
method. Note that although Jarratt's method and XW method have very close basins of
attraction in most examples above, but the CPU time needed to draw their basins of attraction
is widely different, see Table 1 for the functions fi and f5.
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Based on what we mentioned above we can answer the following question: Are the
optimal methods always better for solving nonlinear equations than other methods? The
answer is clearly No. Even the optimal methods need less functional evaluations in each
iteration, but its clear from the basins of attraction in the previous examples that sometimes
optimal methods show a lot of chaos, which means number of divergent points is greater
some times in optimal methods than other non-optimal methods. One can conclude that
number of functional evaluations in each iteration is not the only factor that confirm the
efficiency of the iterative technique, there are other factors that affect also, like number of
steps in the iterative scheme, order of convergence, and number of arithmetic operations
needed at each iteration.

4. CONCLUSION

In this paper we have considered six different schemes of different orders for solving nonlinear
equations. It can be concluded that obtaining better basins of attraction is not depending on the
order of convergence of the method.Also, one can note that the optimality property of iterative
method is not always good for solving nonlinear equations, as the area of convergence of the
roots of the function not depends only on number of functional evaluations in each iteration,
but there are many other factors like number of steps in the iterative scheme, order of
convergence, and number of arithmetic operations needed at each iteration.
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ABSTRACT

In this paper, the ideaof (S, T)- normed doubt neutrosophic ideals of BCK /BCI-algebras is introduced
and the characteristic properties are described. Then, images and preimages of (S, T)- normed doubt
neutrosophic ideals under homomorphism are considered.
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1. INTRODUCTION

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [4], and
they have been applied to several domains such as groups, rings, topology and measure theory.
Additionally, Iséki [5] initiated the idea of aBCI-algebra, which is a generalization of a BCK -
algebra. The idea of neutrosophic set theory proposed by Smarandache[ll, 12] is a more
general platform that extends the ideas of ordinary, fuzzy and intuitionistic fuzzy sets, and that
is used to several parts: decision making, pattern recognition and medical diagnosis. Triangular
norms were proposed by Schweizer and Sklar[10] to model the distances in probabilistic metric
spaces. In fuzzy sets, t-conorm (S) and t-norm (T) are extensively applied to model the logical
connectives: conjunction (AND) and disjunction (OR). There are several applications of
triangular norms in many domains of artificial intelligence [5] and mathematics. The first
definition of fuzzy subalgebras and ideals in BCK/BCI-algebras was by Xi [13] in 1991.
Modifying Xi’s definition, Jun [6] in 1994 presented doubt fuzzy subalgebras and ideals in
BCK /BCl-algebras. After that, many other researchers used this idea and published several
articles in different branches of algebraic structures [1, 7,14].Motivated by the previous studies,
we present the notion of (S, T)- normed doubt neutrosophicideals of BCK /BCI-algebras and
describe some of the characteristic properties.Then, we consider images and preimages of
(S, T)- normed doubt neutrosophic ideals under homomorphism.

2. PRELIMINARIES
During this paper, let X be a BCK /BCl-algebra unless otherwise specified.

A structure (X,*) is called a BCK-algebra (see [4]) if X contains a special element 0 andsatisfies
the following axioms for all x,y,z € X :

L ((xxy)*x(xx*x2))*(zxy) =0,
II. (x*x(x*xy)*xy=0,
I11. x*xx =0,
IV. x*y=0andy=*x = 0imply x = y.

* Corresponding author
If a BCI-algebra X satisfies 0 * x = 0O, then X is called a BCK -algebra. In a BCK /BCI-algebra,
x * 0 = x holds. A partial ordering < on X can be defined by x < y ifand only if x * y = 0.
A non-empty subset J of X is called an ideal of X if forallx,y € X,(1)0 € J,(2) x *y € ] and

y €] imply x €.

Definition 2.1. [11,12]A neutrosophic set in a non-empty set Xis a structure of the form:
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B = {{x; Br(x), B;(x), Br(x))|x € X},

where By, By, Bp: X = [0,1]. We shall use the symbol B = (By, B}, Br) for the neutrosophic set
B = {(x; Br(x), B (x), Bp (x))|x € X}.

Definition 2.2.[10]JA functionT:[0,1] X [0,1] — [0,1]is called a triangular norm, if it
satisfiesthe following conditions: for allx, y.z € [0,1],

(1) T(0,0)=0,T(1,1) =1,

) T(x, T(y,2)) =T(T(x,y),2),

(3) T,y) =TW,x),

@ T(x,y) £T(x,z)ify <z

If T(x,0) = x and T(x,1) = x for all x € [0,1], then T is called a t-conorm and a t-norm,
respectively. Throughout this paper, denote S and T as a t-conorm and a t-norm, respectively.
Some examples of t-conorms and t-norms are

o  Sy(x,y) = max{x,y} and Ty (x,y) = min{x, y}.

o S;(x,¥y) =min{x+y,1}and T, (x,y) = max{x +y — 1,0}.

o Sp(x,y)=x+y—xyandTp(x,y) = xy.

A t-conorm S and a t-norm T are called associated [11], i.e., S(x,y) =1 —-T(1 —x,1—1y),
for all x,y € [0,1].

Lemma 2.3. [3] Forany x,y € [0,1], we have0 < max{x,y} < S(x,y¥) < 1land0 < T(x,y) <
min{x, y} < 1.

Definition 2.4.[14]A fuzzy set p of X is called a doubt fuzzy ideal ofXifu(0) < u(x) <
max{u(x * y), u(y)}Horallx,y € X.

3. (S, T)-NORMED DOUBT NEUTROSOPHIC IDEALS

Definition 3.1.A neutrosophic setB = (Br, B;, Br)ofXis called a doubt neutrosophic idealofXif
forallx,y € X,

(1) Br(0) < Br(x) < max{Br(x *y), Br(y)},

(2) B;(0) < B;(x) < max{B;(x *y), B;(¥)},

(3) Br(0) = Bp(x) = min{Br(x * y), Br(¥)}-

Definition 3.2.A neutrosophic setB = (Br, B;, Br)ofXis called a doubt neutrosophic
idealofXwith respect to at-conormSandat-normT (or simply,an(S,T)-normed doubt
neutrosophic ideal ofX)if for allx, y € X,

(1) Br(0) < Br(x) < S(Br(x *y), Br(y)),

(2) B;(0) < B;(x) < S(Bi(x *y), B;(¥)),

(3) Br(0) = Bp(x) = T(Bp(x *y), Bp(¥))-

Example 3.3. Consider aBCK-algebraX = {0, k, [, m}which is defined in Table 1:

Table 1: The operation *

k /

oo
= ol3

~xO|*

0
0
k

Define a neutrosophic set B = (Br, B}, Br) of X by Table 2:
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Table 2: Neutrosophic set B = (By, By, Br)

X Br(x) B;(x) Bp(x)
0 0 0 1
k 0.50 0.40 0.33
l 0.50 0.40 0.33

m 1 0.90 0

Clearly,  Br(0) < Br(x) < Sy(Br(x *y), Br(¥)), B1(0) < B;(x) < Sy (Bi(x *y), B/(¥))
and Br(0) = Br(x) = T (Bg(x *y), Be(y)) for all x,y € X. Hence, B = (By, B;, Bg) is an
(Sy, T1,)-normed doubt neutrosophic ideal of X. Also, a t-conorm Sy, and a t-norm T}, are not
associated.

Remark 3.4.Example 3.3 holds even with the t-conorm Sy, and t-norm Ty. Hence, B =
(B, By, Bp) is an (S, Ty )-normed doubt neutrosophic ideal of X.

Remark 3.5.Every doubt neutrosophic ideal of X is an (S, T)-normed doubt neutrosophic ideal
of X, but the converse is not true.

Example 3.6.Consider aBCK -algebraX = {0,1,2,3,4}whichis defined in Table 3:

Table 3: The operation *

* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 2 1 0 0
4 4 4 4 4 0

Define a neutrosophic set B = (B, B}, Bp) of X by Table 4:

Table 4: Neutrosophic set B = (Br, By, Br)

X Br(x) Bi(x) Br(x)

0 0.50 0.50 0.33
1 0.50 0.50 0.33
2 0.50 0.50 0.33
3 0.75 0.75 0.25
4 0.75 0.75 0.25

Clearly, Br(0) < Br(x) < S,(Br(x *y), Br(¥)), B;(0) < B;(x) < S.(B;(x *y), B;(y)) and
Br(0) = Bp(x) = Tp(Br(x xy),Bp(y)) for all x,y € X. Hence, B = (By,B;,Br) is an
(S;, Tp)-normed doubt neutrosophic ideal of X, but it is not a doubt neutrosophic ideal of X.

Definition 3.7.A mappingf: X — YofBCK /BCl-algebras is said to be a homomorphism
if0(x+xy) =60(x) *0(y) Vx,y € XIf 8: X - Y is a homomorphism, theng(0) = 0.
Let 8:X - Y be a homomorphism of BCK/BCl-algebras. For any neutrosophic set B =
(B7, By, Br) in Y, we define a new neutrosophic set B[8] = (By[8], B;[6], BF[6]) such that for
allx € X,

Br[6]:X - [0,1], Br[6](x) = Br(6(x)),

BI [9] X - [0,1], BI [9](3() = BI (g(x))'

Bp[6]:X - [0,1], Bp[6](x) = Br(6(x)).

Theorem 3.8.Let 0: X — Y be a homomorphism of BCK /BCl-algebras. If B = (Br, By, Bp) is
an (S, T)-normed doubt neutrosophic ideal ofY, then B[O] = (Br[0], B;[8], BF[0]) is an
(S, T)-normed doubt neutrosophic ideal of X.

Proof. We first have
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Br[6](0) = Br(8(0)) = Br(0) < Br(6(x)) = Br[0] (%),
B;[6](0) = B;(6(0)) = B;(0) < B;(6(x)) = B;[0](x),
Br[6](0) = Br(6(0)) = Br(0) = Br(6(x)) = Br[0](x)
forall x,y € X. Letx,y € X. Then,
Br[8](x) = Br(8(x)) < S(Br(8(x) * 6()), Br(6()))
= S(Br(0(x *y)), Br(6(¥)))
= S(Br[6](x *¥), Br[8]1(¥)),

B[6](x) = B;(6(x)) < S(B;(8(x) * 6()), B, (6()))
= S(B;(6(x *)), B/ (6()))
= S(B,[6](x = ¥), B{[0]())

Br[6](x) = Br(6(x)) = T(Br(6(x) * 6(¥)), Br(6(¥)))
=T(Br(0(x *¥)), Br(6(¥)))
= T(Bp[0](x * y), Br[0](¥))-
Therefore, B[6] = (By[6], B;[0], Br[0]) is an (S, T)-normed doubt neutrosophic ideal of X.[]

and

Theorem 3.9.Let 0: X = Y be an onto homomorphism of BCK /BCl-algebras and let B =
(B, By, Br) be a neutrosophic set of Y. If B[8] = (Br[8], B;[0], B£[0]) is an (S, T)-normed
doubt neutrosophic ideal of X, then B = (B, B}, Br) is an (S, T)-normed doubt neutrosophic
ideal of Y.

Proof. For any b € Y, there exists a € X such that 8(a) = b. Then,
Br(0) = Br(6(0)) = Br[6](0) < Br[6](a) = Br(6(a)) = Br(b),
B;(0) = B;(6(0)) = B,[6](0) < B;[6](a) = B;(6(a)) = B;(b),
Br(0) = Br(6(0)) = Br[6](0) = Br[6](a) = Br(6(a)) = Br(b).

Letx,y € Y. Then, 8(a) = x and 8(b) = y for some a, b € X. It follows that
Br(x) = Br(6(a)) = Br[0](a)
< S(Br[6](a * b), Br[6](D))
= S(Br(6(a b)), Br(6(b)))
= S§(Br(6(a) * (b)), Br(6(b)))
= S(Br(x *y), Br()),

B;(x) = B;(6(a)) = B;[6](a)
< S(B,[6](a * b), B;[6](b))
= S(B;(6(a * b)), B;(6(b)))

= S(B;(6(a) * 6(b)), B;(6(b)))
=S(B;(x *y), B;(¥))

Br(x) = Br(6(a)) = Br[6](a)
= T(Bg[0](a * b), Bp[6](b))
= T(Br(6(a*b)),Br(6(D)))
=T(Bp(8(a) * 8(b)), Br(6(b)))
=TBr(x*y), Br (),
Therefore, B = (Br, By, Br) is an (S, T)-normed doubt neutrosophic ideal of Y.[J

and

5. CONCLUSIONS

We have presented the notion of (S,T)- normed doubt neutrosophic ideals of BCK/BCI-
algebras and described the characteristic properties. Then, we have considered images and
preimages of (S, T)- normed doubt neutrosophic ideals under homomorphism.
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ABSTRACT
In this paper we shall solve Burger-Lokshin (BL) equation

u?

ou Ju 0%u a (7)

Where t>0
u(@,0) | 1o = u*(0)
¢>0,> 0,0 € (0,1),b=0
byapproximate method namely Sumudu transform. Also the statistical properties of the solution will be
studied.

Keywords:Burger-Lokshin (BL) equation ,Fractional calculus, Caputo derivative,Sumudu transforms.

1. INTRODUCTION

The fractional differential equations(FDEs) appear more and more frequently in different
research areas and engineering applications[7]. Momani[9] has presented nonperturbative
analytical solutions of the space-and time-fractional Burgers equations by Adomain
decomposition method. Wang[8] extend the application of the homotopy perturbation and
Adomian decomposition methods to construct approximate solutions for the nonlinear
fractional KdV-Burgers equation.

The one-way Burgers-Lokshin (BL) equation is the simplest model, that combines both these
features , it has the following form:

2
6u+ 6u+ 6“u+ba(u7)_
ot " “ox TS oe ox

0
Where t>0

U, 6) | oo = u°(x)
with compactly supported initial datum u(t = 0,x) = u°®(x) at t=0. The coefficients are ¢c>0
the sound speed, and £>0 which takes into account the specific length of both viscous and
thermal effects and the radius of the duct, also the fractional order & € (0,1) is ¢ = %, b=0, or

Burgers coefficient, quantifies the nonlinear effects[6].

The Sumudu transform method (STM) was first proposed by Watugala[4]. [5] the author started
from the definition of the Sumudu transform on general time scales to define the discrete
Sumudu transform and present its basic properties.

2. PRELIMINARIES
In this section, we present some basic definitions and properties of the fractional calculus theory
and Sumudu transform which are used in this work.

Definition 2.1[3]

A real function f(x),x > 0, is said to be in the space C, , HER, if there exists a real number
p(p >u) , such that f(x) =xPf;(x) , where f;(x)€ C[0, ), and it is said to be in the space
cl ifff(m)ECH, where meN.
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Definition 2.2[3]
The Caputo definition of fractional derivative operator is given by;

DEf(X) = JE*Df(x) = —— [Xx =" f®(Ddr, t>0 (1)

r(n—a)
Forn -1 <a<n,nenN.

Definition 2.3 [1]
The Sumudu transform is defined as follows,

Let
el

| 3M, 1, 1> 0, |£(0) ke T, ift E(=1)Ix [0, o)} @A = {f(©)
is defined as,
) B SIfF (O] = G = f) f@)e™tdt = [~ f (e dt,u € (-15,7,
Properties of the Sumudu transform are given as:
1. S[1]=1;

5 [r(;+1)] =u",n>0;

3.S [e%] = 1_1au;
4.S[af(0)+Bg(]=aS[f (O] +PS[g )]
Theorem 2.1]1]

If G™(u) is the Sumudu transform of n-th order derivative of f™(t) ,forn = 1 then we have :

n-—1
Faw) N o)
un un—k
k=0

G"(w) =

Where—1<n—1<a<n.

Lemma 2.1[1]
The Sumudu transform S [f (x)] of the fractional derivative introduced by Caputo is given by

SIF ()] -1f90
S [D4f (0] =L -yt e <a<n (@)
3. ANALYSIS OF THE METHODI1]
In this work, we apply Sumudu transform method to solve nonlinear Burgers-Lokshin

(BL) equation. Consider a nonlinear differential equationswith initial condition of the form:
D%y =R(y)+Nx—-—1)+gx),teRx<tn—-1<a<sn (5

()
TNGD) _ (@ (x,0)]zg = F(), @=0,1,20m=1. , (6)

Where Dfu(x,t) isthe Caputo fractional derivatives, g (x, t) is the source term, L is the
linear operator and N is the general nonlinear operator.usingSumudu transform on both sides
of equation (5)
S[Dfu(x,t)] =S[L(x,t) + Nu(x,t) + g (x,t)] (7)
Using the property of Sumudu transform (4) and substituting into (6) we have:
m—1
u”S[u(x,t)] — Z u™@ R K (x  0) = S[Lu(x,t) + Nu(x,t) + g(x, )] (8)

k=0
Then,

S[u(x,t)] = Xrs u fi, (x) + u®S[Lu(x, t) + Nu(x,t) +g(x,t)] (9)

So, the standard Sumudu decomposition method is an infinite series given by:
u(x,t) = Xnpzoun (x, ) (10)

The nonlinear term operator [2] is decomposed as:
Nu(x,t) = Xn=oAn (W) (11)
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Where 4y, are | the Adomian polynomials of ug, Uy, ... , Uy, ... that are obtain by:
An(W) = n'dln[ 2o u)] h=o, n=0,1,2,... (12)

The Adomian'’s polynomials for equation (12) are obtained from the following:
ou;
A= ), Uiy
o<i<n
0<j<n

Then, substituting equations (10) and (11) into (9) to get:
S[E=ottn (6, )] = TR u fir () + uS[L IR Un (6, 8) + X0 An (W) + g (x,1)]  (13)

Comparing both sides of (13) yields the following iterative algorithm:

m-—1

S[uo(x, 0] = ) uk fi()
k=0
S [ui(x,t)] = u*S[Lug(x,t) + Ag(u(x,t)) + g(x,t)]
S[un+1(x, )] = u¥S[Lu, (x, £) + Ay (u (x, 1)), n > 1
Applying inverse Sumudu transform to both sides of the above equations yields:
uo(x,t) = STHER u fir (%))
uy (x,t) = STHES[Lug(x, £) + Ag(u (x,0) + g(x, D))
Unp1(x,0) = STEES[Luy, (x, 0) + Ay(u(x,0)]),n = 1.
Finally, the solution ua(x , t ; ) can be approximated by the truncated series;
un(x,6) = 0w (xr,6)  (14)
Such that
Tll_r)rgo u,(x,t) = u(x,t) (15)
Now applying Sumudu transform method to solve Burger—Lokshin (BL) equation
(—)

Lpcye =0 (16)
Where t>0, ¢>0, > 0 ,a € (0,1) ,b=0

u(x,0) =sinx (17)
Taking Sumudu transform of equation (16), and using the property of Sumudu transform
together with the initial condition, we get:

Bt“

u2
5] d 20(=)
S [u(x, )] =—u“§ —a—’:—cﬁ—b )], (18)

The inverse of Sumudu transform implies that;

[e0] 1 - (o) [e0) oo= 't
S8ty (6, =S UTS[Eo0 Uy (¥, 1) — Doy (x, £) — b(E=2EDy2]119)
The recursive relation is given as:
up(x,t) = sinx

(u O(x t))
ul(x t) = —S 1[u‘)‘S[— uo(x t) — c—uo(x t) — b—2—1]
a (u n— 1(x:t))
(6, 6) = $ ST OS]~ San-a (¥, 8) — € 2n = 10x, ) = b——2—1]
Upon passing calculations, we get:
.8 = 1 —ct® ) t*
u;(x, —S(r(a_l_l)cosx r(a_l_l)smxcosx)
1 2a-1 p t2a-1 2 2«
u(x,t) = —=( cosx +— sinx cos x — ————<sinx
e TQa) eI'2a) eIr'Ra+1)
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+bc t2® (—sin? x + cos?x) b%c I'a + 1)t3« (=2 + cos®x)
—————(—sin“x + cos“x) — —- —2sinx cosx + cos°x
eIrQa+1) 2 T(a+1)’ra+1)

E rQa+1)t3% b_3 ra+1)t3%

£2 (T(a+1))2r(3a+1) £2 (T(a+1))2r(3a+1)
And so on.

The solution by Sumudu transformation is:

(sin3 xcos x) + (sin xcos3 x))

u(x,t) = Z?’;Oui(x, t) =
ug(x,t) +u(x,t) +uy(x,t) + -

) c t“ b t® , N c t2a-?t
=sinx ——————Cc0sx ——————sinxcosx + ————cosXx
elfMa+1) elfNa+1) 2 I'2a)
b t2a—1 C2 tZa bC tZa ) )
+————sinxcosx —————sinx + ——— = (—sin“ x + cos“x
‘921"(204)l 51"(20(+1)1 EZF(Z(Z+1)( ! )

b?c TrQa+1)t3¢

_bic_ r@atne”™ . o 3
= (l"(a+1))21"(3a+1)( 2sinx cosx + cos>x) (20)

b®  rQa+1)t3%

b3 b_3 r2a+1)t3¢
3 (T(a+1))2r(3a+1)

_ rQa+ne3® . 5
o T et DT GarD (SInXCos™ x) +..

(sin3 xcos x) +

u
u

Figure 1 : represent the solution where0 < t < Figure 2 : represent the solution where 0 <t < 1,0.1 <
1,0<x<2,c=300,b=0,e=1anda =1/2 x<09,c=300,b=0,¢=1landa =1/2
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ABSTRACT

Diophantine equations have a central and a significant role in mathematics especially in
number theory. It is an algebraic equation or a system of polynomial equations with several
variables and high order to be solved in set of integers, set of rational numbers, or other
number rings. It is not easy to solve Diophantine equations if the number of variables is
more than the number of equations.

The paper proposes a method to find infinitely non zero solutions of quartic diophantine
equation with three unknowns in set of integers. Then, several properties for solutions are
demonstrated. Also, significant relations between special numbers and solutions are
determined and one of open problems in the literature is completed/solved.

Keywords: Quartic Diophantine Equation;Integer solutions of Pell Equations; Linear
Transformations; Special Sequences.
2010 Mathematics Subject Classification: 11D25, 11B83, 11D09.

1. INTRODUCTION AND PRELIMINARIES

In this paper, we consider a ternary quartic Diophantine equation given by 10x5 — 11x? +
11x5 = 3(x, + x;). The main aim of the paper is to determine some non-zero integer solutions
of the such non-homogenous Diophantine equation. For all non-zero integer solutions of the
equation, we have to consider and apply four different patterns include different
transformations. But, we just prove one pattern with a linear transformation in this work. To
get integer solutions of the such Diophantine equation, we use following steps: First, we create
a transformation to reduce to Pell equation and secondly , we apply Brahmagupta’s Lemma on
the obtained Pell Equation in the first step to have integer solutions. Also, we get various
properties for the solutions in the terms of some special numbers such as Nasty numbers, Bi-
quadratic numbers, Polygonal numbers, Pyramidal numbers etc...

We have used all references [1-19] to obtain our results in the paper. Especially, we require
following basic notions and theories to get and prove Main Results section.

Definition 1.1.A biquadratic number is a fourth power of an integer, it means that §*. The first
few biquadratic numbers are 1, 16, 81, 256, 625, ... It is related with Waring’s problem which
is defined as “Every positive integer is expressible as a sum of (at most) biquadratic integers”.

Definition 1.2. (Nasty Numbers) A nasty number is a positive integer with at least four different
factors such that the difference between the numbers in one pair of factors is equal to the sum
of the numbers of another pair and the product of each pair is equal to the number. Thus a
positive integer n is a nasty number, if n=ax*b=c*xdanda+b=c¢—d where a, b, ¢, d are
positive integers.

Example 1.3. The positive integer u with four different factors is 96 and it is nasty number.
Since factors of 96=1,2, 3,4, 6,8, 12, 16,24, 32,48, 96 and 96 =8 x 12 =24 x 4 as well as
8 + 12 =24 — 4. Therefore 96 is a nasty number.

Lemma 1.4. Properties of Nasty Numbers are given by following expressions:
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1. If u is a nasty number, then clearly 2" is also a nasty number for every non-
zero integral value of v.

2. If four positive integers a, 5, ¥, 6 such that a, 8,y are in arithmetic progression
with § as their common difference, then u = a * § * y * § is a nasty number.

3. Every integer u of the form 6.(12 + 22+ 32+ - - - + k ?) is a nasty number.

4. Every integer u of the form 6.[12+ 32+ - - - + (2k — 1) ] is a nasty number.

Definition 1.5.(Polygonal Numbers) Polygonal numbers are number representing dots that are
arranged into a geometric figure. Starting from a common point and augmenting outwards, the
number of dots utilized increases in successive polygons. As the size of the figure increases,
the number of dots used to construct it grows in a common pattern.

The concept of polygonal numbers was first defined by the Greek mathematician Hypsicles in
the year 170 BC. There are some different types of polygonalnumbers such as square
numbers,triangular numbers, pentagonal numbers so on..

In this work, we use Polygonal number of rank n with size m defined as follows:

t =n[l+%(m_2)}

m,n

(M

Definition 1.6.(Pyramidal Numbers) A figurate number corresponding to a configuration of
points which form a pyramid with m-sided regular polygon bases can be thought of as a
generalized pyramidal number.

In the numbers, m=3 corresponds to a tetrahedral number, and m=4 to a square pyramidal
number. Pyramidal numbers may also be generalized to higher dimensions as hyperpyramidal
numbers.

In this paper, we consider Pyramidal number of rank n with size m which is defined as following
equation:

P = [+ m-2)n-+(5-m)l )

Lemma 1.7.(Brahmagupta’s Lemma) If (x1, ;) is a solution of Dx? + s; = y? and (x3,y,) is
a solution of Dx? + s, = y?2 , then (x1y; + X3V1, V2y1 + Dx1x5) and (x1Y, — X321, V2 V1 —
Dx;x,) are solutions of Dx? + s;5, = y2.

Note:In the 17th century , Fermat started to work on Pell equation in europe and after him,
Euler and Lagrange continued. John Pell, after whom the Pell equation is named.

Definition 1.8.x2 — Dy? = 1 is known as Positive Classic Pell's equation, where D i s a
positive integer which is not a perfect square.

Definition 1.9.A transformation is a function from one vector space to another that respects the
underlying structure of each vector space. A transformation is also known as a operator or
map.Especially, linear transformations are useful since they preserve the structure of a vector
space.
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2. MAIN RESULTS
Theorem 2.1.Let
10x3 — 11x7 + 11x2 = 3(xy + x4) 3)

beternary quartic Diophantine equation. Then, followings are satisfied.

(1) There is a transformation that (3) equation reduces to positive Pell equation and the
least positive solution of the (3) is determined by (x4, x5, x3) = (126,124,5).
(ii) The corresponding other non-zero integer solutions to (3) are stated by
63 2445 555v22 2395 545v22
Xy = 5 T+ = Smt = TmSm  and  xp . = 3lr;+ P~ S+, TmSm
5 V22
X3m+1 = ETm + TSm

such that r;,,, s,,are defined by the solutions of positive classical Pell equation.

Proof. As we said in the introduction part there are different patterns of the solutions for (3)
and in here we just use one of them as following:

(1) Let us consider the transformations
x; =5a2+p% ,x,=5a?—p% . x3=«a 4)
By substituting (4) into the (3) we get following positive Pell equation.
a?—22B%2=3 5)

Using a computer program ( or Continued Fraction Algorithm) for finding the least positive
solution of (5), we obtain

ap=5and ;=1 (6)
If (6) substitutes in (4), then following values are got for x4, x5, X3.
%1 =126, x, =124 and x3 =5 (7)
So, the least positive solution of the (3) is attained by (x4, x5, x3) = (126,124,5).

(i1) For other general solutions( &, fm ) of positive Pell equation (5), considering the positive
Pell equationa?® — 223% = 1, we get general solutions as follows:

1 1
an =5[(197 +42v22)"" + (197 —42v22)""| = o3,

m+1 m+1 1
Bin (197 +42v22)" - (197 —42¥22)" | = N

_ 1 [
22
form=-1,0,1,2,...

From Lemmal.2, applying Brahmagupta’s lemma between the solutions (ag, )
and(ayy,, fm)the sequence of integer solutions to (5) are defined by
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1 1 5
U1 = 5 (5% + V22sy,) and Pmiq = E(rm + ﬁsm) 8)

form=-1,0,1,2, ...
If we substitute (8) to (4), then general corresponding non-zero integer solutions to (3) are
determined by

63 2445 o 555v22

_ 63 5 _ 2, 2395 5 | 545V22
Xpyr = 3 Tt 55 Sm + = TmSm and  x,, . = 31, + ss Sm T TmSm
5 V22
X301 = 57‘m+—2 Sm

form=-1,0,1,2,...

Example 2.2. Considering the Theorem 2.1, we can find several solutions of (3) as numerical
examples.

Form = =1, (xq,,%,,%x3,) = (x1,%,%x3) = (126,124,5)

Form =0, (%1,,%2,,%3,) = (18387054, 18055756,1909)

Form =1, (X1,,X2,,%3,) = (2854294786854, 2802866051956, 752141)
Corollary 2.3. There are some relations among sequences of integer solutions of (3) as the
following:

i) xy,,, +xp,, =10x5 . form=-1,0,1,2,..
(i)  22x, , —109x5 . =3form=-10,1,2,..
(i)  11x, ., —109x, , =30,form=-1,0,1,2, ..
(iv)  111x5 , —22x; , =3,form=-1,0,12,..

Proof.1t is easily to seen that all conditions are satisfied for m = —1 and m = 0. Also, it can
be provedby using Mathematical induction and computer program for m > 0.

Corollary 2.4. Each of the following statements is represented by quartic (bi-quadratic)
integers.

(i) 25x3 ., — x1,,,.% . =A% form=-1,0,1,2,..andA € Z.
(i) 5[x2,,, +x% . —50x}  ]= Biform=-1,012 ..and BE L

Proof.We can see that It can be proved byDefinition 1.1 and mathematical induction as well as
computer program.

Corollary 2.5. Sequences of general non-zero integer solutions of (3) are written in the terms
of polygonal number of rank x5 .  with size 22 as follows:

s T X2pmer ™ My, = Loz .

Proof.It can be proved using Definition 1.3, Mathematical induction and also computer
program.
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Corollary 2.6. Following expressions give relations between sequences of general non-zero
integer solutions of (3) and the terms of pyramidal number of rank x5 . with size 5 or rank
(x3,,,, — 1) with size 3.
: — 5 —
(i) (1, + X2,,,) (s, + D) =20P3 form=-1,0,1,2,..
(i) (¥1,,, + X2, —10).%5,, =603 _  form=-1,012,..

Proof.Using Definition 1.4, Mathematical induction and computer program, we can prove the
Corollary 2.6.

Corollary 2.7. Pyramidal number of rank x5 . with size 4 and polygonal number of rank
X3, ., Withsize 3 is written by sequences of general non-zero integer solutions of (3) as follows:

)

— — 4 —
(x1m+1 T X244 10)'x3m+1 - 30(Px3m+1 3 X344

form=-1,0,1,2, ...

Proof. Considering Definition 1.4, Definition 1.3, Mathematical induction and computer
program, Corollary 2.7 can be demonstrated form = —1,0,1, 2, ...

Corollary 2.8.3(xy,,,, — X,,,,) is a nasty number form = —-1,0,1,2, ...

Proof.In a similar way of the proofs of above corollaries, form = —1,0, 1, 2, ..., it is proved by
Definition 1.2, Mathematical induction and computer program.
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ABSTRACT

Many open problems in Number Theory has been waiting to solve for a long time before. One
of them is Diophantine 3-tuples Pgwhich is defined as “sets with the property such that product
of any two distinct elements adding s integer is a square integer”.

The purpose of this study is to determine some special non-extendible regular P; Diophantine
3-tuples for a fixed integer s. To get them, solutions of diophantine equations are considered.
Some characteristic properties are determined for such sets. Results are demonstrated using
some notions such as quadratic reciprocity law, legendre symbols, quadratic residues, modular
arithmetic and so on ... from algebraic and elementary number theory.

Keywords:Diophantine Triples; Diophantine Equations; Integral Solutions; Quadratic
Reciprocity Theorem;Legendre Symbol; Modular Arithmetic; Pell Equations.
2010 AMS Mathematics Subject Classification:11A07, 11D09, 11A15.

1. INTRODUCTION AND PRELIMINARIES

The purpose of this brief paper is to determine some specific non-extendible regular
Diophantine triples with propert P for fixed integer s = 41 or s = —41. To prove those sets
are not extendible, we consider quadratic diophantine equations and apply factorization method
of integers on them. Then, we determine their congruences types and regularity.Also, we
classify the elements of Diophantine sets with propertyP for fixed integer s = 41 ors = —41
using basic concepts of elementary and algebraic number theories. The paper will constitute the
basis for our next paper.

All of the references [1-17] are significant and handy for the topic of this paper. Following
basic concepts and theories are used to get our main results for the paper.

Definition 1.1.(Diophantine Sets,Diophantine Tripleswith PropertyPg)Foranyinteger s, a
Diophantine P¢-set with n-tuples is defined as the following:

A set {04, ..., 0,} is n-tuple of different positiveintegers where 6;0; + sis always a perfect
square of an integer for every distinct 7 andj, wherei,j = 1,2, ..., n.

As a particular case, the set is calledPg- Diophantine triple if n =3.

Definition 1.2.(Regular Diophantine Triple)If Pg- Diophantine triple{p, g, T } satisfies the
condition

(t—0-p)*=4(p.c+5)(1)
it is called Regular Diophantine Triple.

Definition 1.3.(Quadratic Residue)If u € N and y € Z with gcd(y,u) = 1, then y is to be a
quadratic residue modulo u if there exists an integer 4 such that

y? =y (mod W) 2)

Besides, if (2) has no solution, then y is called a non-quadratic residue modulo wu.
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Definition 1.4.(Legendre Symbol)If m € Z and g > 2 is a prime, then

1, if ais quadratic residue modulo q

(2)=] o, if g|m 3)
-1, otherwise

and (%) is called the Legendre Symbol of m with respect to q.

Theorem 1.5. (The Quadratic Reciprocity Law)Letp, q be distinct odd primes.Then

BO-cv"F e

q

where () represents Legendre symbol. Also, Quadratic Residuacity of 2 modulo g is given by

() = -n@-0s )

q

and also Quadratic Residuacity of (-1) modulo g is defined by

- ifqg = d
(3)= {—11 lif?; = 1—(;12210?4) ©)

Definition 1.6. (Congruence Type)If the elements of setP¢- Diophantine triples are reduced
modulo 4, it is called congruence type column and represented by [..., ..., ... ].

2. MAIN RESULTS
Theorem 2.1. LetA = {2,160,200} be a set with three positive integers. Then following
statements are satisfied.
(i) A = {2,160,200} is a non-extendible to Diophantine quadruple with property P, ;.
(i1){2,160, 200} is regular Diophantine triple with property P, ,; and congruence type
column of the set is [2, 0, 0].

Proof. (i)Let {2,160,200}can be extended to Diophantine quadruple with property P, 4.
Then, {2,160, 200, 7}is Diophantine quadruple for any positive integer #.Then, there exist
U4, U, U3 integers such that following equations are hold.

27 + 41 = uy? (7)
1607 + 41 = u,? (8)
2007 + 41 = ug? 9)

Simplify# between (7) and (9), we obtain
100u; % — uz? = 4059 (10)

By factorizing the both side of (10), then we get following table:
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Table 1:Integer solutions of 100u,? — u32 = 4059

Solutions 1.Class of 2.Class of 3.Class of 4.Class of
Solutions Solutions Solutions Solutions
Uq ¥203 ¥23 ¥19 ¥7
Uz ¥2029 ¥221 F179 ¥29
Dropping of 4 between (7) and (8), we get
80u,2 —u,? = 3239 (11)

From the values of variables in the Table 1, we calculate u;2 = 41209 , u;2 = 529, u;? =
361 and u;? = 49 respectively. Putting values ofu,? into the (11), u,2 = 3293481, u,? =
39081, u,2 = 25641 and u,2 = 681 are obtained. This is a contradiction sinceu,’s values are
not integer solutions of (11).

So, there is not any such 7 € Z* and the P,,; = {2,160,200} can not be extended to
Diophantine quadruple.

(ii) Let consider regularity condition (1) in Definition 1.2. Then, it is easily seen that
P,41 = {2,160, 200}is a regular Diophantine triple.

We can see that the congruence type column of A = {2,160,200} is [2, 0, 0]. Also, one of the
congruence type of [12] is obtained from (ii) in Theorem 2.1.

Theorem 2.2.LetB = {2,200,244} be a set of three positive integers. The following
expressions are hold.

(1) B = {2,200, 244}cannotextendible to Diophantine quadruple with property P, 4.
(i1) {2,200, 244} is a regular Diophantine triple with property P,,; and congruence type
column of the set is [2, 0, 0].

Proof. The proof of the Theorem 2.2 is obtained as like the proof of the Theorem 2.1.

Theorem 2.3.If a setC = {4,62,100} is of three positive integers, then the following statements
are provided.

(1) C = {4,62,100} can non-extendible to Diophantine quadruple with property P, ;.
(i1) C = {4,62,100}is a regular Diophantine triple with property P, 4, and congruence
type column of the set is [0, 2, 0].

Proof.(i)Given that C = {4,62,100, &} be a Diophantine quadruplewith property P,,; for
K € Z%*.Considering the Definition 1.1, we have

4K/ +41 =0, (12)
62 & + 41 = 0,2 (13)
100 & + 41 = 032 (14)

for v, v,, 03 € Z. Dropping & from (12) and (14), following equation is obtained;

1000,2 — 4v52 = 3936 (15)
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And also in a same way, we obtain following equation from (12) and (13);
31v,2 — 2p,%2 = 1189 (16)

From the factorization method in the set of integers, we have following table for (v,13)
soutions in the set of integers.

Table 2:Integer solutions of 100v,% — 4v52 = 3936

Solutions 1.Class of Solutions 2.Class of Solutions

(01,03) (F25,F121) (F17,%79)

Using the v, values from Table 2 and substituting in the (16), we getv,2 = 9093 or v,2 =
3885. This shows that v, is not integer solution for (16). It is a contradiction and P,,q =
{4,62,100} is a Diophantine triple.

(ii)Applying the condition (1) of Definition 1.2 on C = {4,62,100} , we can see that the
set is regular triple. Besides, using modulo 4 on the set , we obtain congruence type column as
[0, 2, 0] which is not found in [12].

Theorem 2.4. A setD = {4,100, 146}is of three positive integers. D = {4,100, 146} can be
non-extended to Diophantine quadruple with property P, 4;. Also,D = {4,100, 146} is regular
and congruence type column of the set is [0, 0, 2].

Proof.The proof of the Theorem 2.4 is obtained in the similar way of the Theorem 2.1. or
Theorem 2.3. Applying (mod 4) on the set , congruence type column is given by [0, 0, 2] which
is not determined in [12].

Theorem 2.5. Given that € = {8,10,40} is a set of positive integers. Then, £ = {8,10, 40}
can not be extended to Diophantine quadruple with property P, ,,. Besides, € = {8,10,40} is
regular Diophantine triple and alsocongruence type column of the set is given by [0, 2, 0].

Proof. The proof of the Theorem 2.5 is obtained in the similar way of the Theorem 2.1. or
Theorem 2.3. Congruence type column is determined by [0, 2, 0] as like in [12].

Theorem 2.6.Let F = {10,40,92} is a set of positive integers. Thus, both F =
{10,40,92}can not extendible to Diophantine quadruple with property P,,; and F =
{10,40,92}is regular Diophantine triple. Additionally, [0, 0, 2]is congruence type column of
theF set.

Proof. The proof of the Theorem 2.6 is obtained in a same way of the Theorem 2.1. or Theorem
2.3. As we said in the proof of Theorem 2.4,congruence type column is defined by [0, 0, 2]not
in [12].

Remark. New sets for P, 4, Diophantine triples can be found with our method and all of them
can be generalized in the terms of some special numbers or special integer sequences.

Theorem 2.7.Following conditions satisfy for Diophantine sets with property P, 41:

(i) XeZ* Xis divided by 3 or any multiplies of 3, then X & P, 4.
(ii) (X € Z* , X is divided by 7 or any multiplies of 7, then X & P,4; ) or (X€Z" , X
is divided by 11 or any multiplies of 11, then X & P,,; ) or (X € Z* , X is divided
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by 13 or any multiplies of 13, then X & P,4,) or (X € Z* , X is divided by 17 or any
multiplies of 17, then X & P,4,) or (X € Z*, X is divided by 19 or any multiplies
of 19, then X & P,4;) or (X €Z", X is divided by 29 or any multiplies of 29, then
X €& Piyq),...s00N...

Proof.i)Given that both #¢ Z* and also X € Z*, & is divided by 3 or any multiplies of 3, be
elements of P, 4, Diophantine set.From the Definition 1.1, we get

3%6 +41 = X? (17)
for an integerX andX. Applying (mod 3) on the both side of (17), we obtain
X2 = 2 (mod 3) (18)

From (5) of Theoem 1.1, we have
2
@)= - w

It implies that (18) doesn’t have solution and it is a contradiction. So, If X ¢ Z*, X is divided
by 3 or any multiplies of 3, then X & P, 44.

i1)The first satisfied condition of Theorem 2.7 is proved by using Theorem 1.1. In a
similar way and using Definition 1.3, Definition 1.4, Definition 1.5 and Theorem 1.1, others
can be proved.

Remark. Theorem 2.7 can be extended for some integers.

Theorem 2.8.LetG = {7, 30, 63}be a set of three positive integers. Then, following expressions
are provided with property P_,4.

(1) G = {7, 30, 63}cannot extendible to Diophantine quadruple with property P_,4.
(11) G ={7,30, 63} is a regular Diophantine triple with property P_,, and congruence
type column of the set is determined by [3,2, 3].

Proof.(i)Assume that G = {7,30, 63, X} be a Diophantine quadruple with property P_,, for
I € Z*.Applying Definition 1.1 on the §G set, we get

7% — 41 = w, 2 (20)
30T — 41 = w,2 Q1)
63T — 41 = w,2 (22)

for w4, w,, w3 € Z. Using simplification of T from (20) and (22);
w32 — 9w, 2 = 328 (23)

is obtained.In a same vein, we have following equation from (2.14) and (2.15);
7w,% — 30w,2 = 943 (24)

We have following table from the equation (23):
Table 3: Integer solutions of w32 — 9w,? = 328
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Solutions 1.Class of Solutions 2.Class of Solutions

(w3, m4) (+83,+27) (+43,+13)

We obtainw,? = 3259 or w,2 = 859 by considering Table3. It is clear that w, is not integer
solution of the (2.18) equation. So, it is a contradiction. P_,; = {7, 30, 63}is a Diophantine
triple and can not extendible to Diophantine quadruple with property P_,;.

ii) We can easily see that the set{7, 30, 63} is regular triple from the condition (1) of
Definition 1.2. Also,practicing (mod 4), we get congruence type column as like[3, 2, 3]which
is not in [12].

Theorem 2.9.For a setH = {9,18,49} includes three positive integers, the following
statements are provided.

(1) H = {9,18,49}cannot extendible to Diophantine quadruple with property P_,;.
(i1) H = {9,18,49}is a regular Diophantine triple with property P_,, and congruence type
column of the set is given by [1, 2, 1].

Proof. The proof of the Theorem 2.9 is got in the same way of the proof of Theorem 2.8.
From modular algorithm, we have congruence type column as [1, 2, 1]which is not in [12].

Theorem 2.10.For a setd = {9, 49, 98}contains three positive integers then 7 = {9, 49, 98} can
not be extented to Diophantine quadruple with property P_,;. Besides, 7 = {9,49,98} is a
regular Diophantine triple set and congruence type column of the set is determined by [1,1, 2].

Proof.The proof of the Theorem 2.10 is hadlike the proof of Theorem 2.8. We have congruence
type column as like [1, 1, 2]given in [12].

Theorem 2.11:There is no Diophantine set P_,; contains any multiple of 4, 13, 17, 23, 29,
31...so on...

Proof.Suppose that g is an element of Diophantine set P_,4 . If 43 is also an element of set
P_,, for 3 € Z, then

439 — 41 = y* (25)
is satisfied for some integer y. Considering (mod 4) and apply on the (2.19), we get
y2 = 3 (mod 4) (26)

If y is odd integer then we have y? = 1 (mod 4) and also y? = 0 (mod 4)is obtained
otherwise. So, (26) can not be solved. This is a contradiction. Thus, there is no Diophantine set
P_41 contains any multiple of 4.

Remark.There are lots of integers which aren’t in Diophantine setP_4,and one may determine
others using our method based on preliminaries section.
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ABSTRACT

In this paper we have obtained integral sufficient conditions under which the zero solution of a nonlinear
differential equation of second order with initial condition is unstable in the sense of Hyers and Ulam .
We also have proved the Hyers -Ulam Instability of a linear differential equation of second order with
initial condition. To illustrate the results we have given an example.

Keywords: Hyers -Ulam , Instability, Nonlinear ,Linear, Differential equations.

1. INTRODUCTION

In [10], Ulam posed the basic problem of the stability of functional equations: Give
conditions in order for a linear mapping near an approximately linear mapping to exist . This
problem was partially solved by Hyers in 1941, for approximately additive mappings on Banach
spaces [3]. In 1978 Rassias in his work [8], has generalized that result obtained by Hyers.

After then, many mathematicians have extensively investigated the stability problems of
functional Equations. More than twenty years ago, a generalization of Ulam's problem was
proposed by replacing functional equations with differential equations.

The first step in the direction of investigating the Hyers-Ulam stability of differential equations
was taken by Obloza [6] and Alsina [1].
This result of Obloza has been generalized by authors [4,5,9,11]. Qarawani [7] investigated

the Hyers-Ulam stability nonlinear differential equation of second order y” 4+ y = h(m)y*ﬁ

with the initial conditions y(z) = 0 = y'(zy). In [2] Brilloué t-Belluot indicated that there

are only few outcomes of which we could say that they concern nonstability of functional
equations.

In this paper, we investigate for the first time the Hyers-Ulam instability of the following
linear differential equation of second order

y" +y= afz)y (L.1)
with the initial conditions

Y(wo) = 0 = y'(zo) (1.2)
Moreover we have proved the Hyers-Ulam instability of the nonlinear differential
equation of second order

y" +y = hz)y’ (1.3)
with the initial conditions

y(z0) = 0 = y'(x) (1.4)
where () is a function defined in R,h € C'(I),I = [z9,2] C R, 2, > 0, and 3 isa

ratio of two positive odd integers.

2. PRELIMINARIES

Definition 2.1 We will say that the Eq. (1.1) has the Hyers -Ulam stability with the initial
conditions (1.2) if there exists a positive constant K > () with the following property:

For every € > 0,y € C?(I) where x is sufficiently large in R , if
" +y— alzyl<e 2.1)
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then there exists some solution wg € C? (I)of the Eq. (1.1), such that
| y(z) — wy(x) |< Ke and satisfies the initial conditions

wy(zp) = 0 = wo(zp)
Definition 2.2 We will say that Eq. (1.3) has the Hyers-Ulam stability with initial conditions
(1.4) if there exists a positive constant K > (0 with the following property:

Forevery € > 0, y € C*(I) where z is sufficiently large inR , if
| y" +y — Ma)y’ < e (22)
then there exists some solution w € C?(I) of the Eq. (1.3) and
w(zy) = w'(xy) =0

such that | y(z) — wy(z) |< Ke.

3. MAIN RESULTS ON HYERS-ULAM INSTABILITY

Theorem 3.1 Suppose that y € C*(I) and|y'(z)| <|y(x)| forall x > g, such that
satisfies the inequality

[y +y— alx) yl<e
with the initial condition
y(xo) =0= y/('xo)

[0.9]
If f o(t)dl diverges, then the zero solution of Eq. (1.1) is unstable in the sense of Hyers and
Z0

Ulam.

Proof. Suppose that y € C*(I) satisfies the inequality (2.1) with the initial conditions (1.2).
We will show that zero solution wy(z) = 0 of the Eq. (1) will satisfy the inequality

|y(x) — wy(x)| > ke . On the contrary, let us assume that there exists € > 0 such that
sup |y(z) — wy(z)| < ke. Then we can find a constant M > O such that

x>

M = sup |y(z)|.

T>7)
From the inequality (2.1) we have
<y +y— azy<e 3.1

Multiply the inequality (3.1) by > 0 and then integrate we obtain
—2ey <y H(z) +y*(2) - 2 ]a(t) yy'dt < 2ey (3.2)
Since |y'(z)| < |y(z)|, then from (3.2) Wexoget
2y%(z) > —2ey + 2}a(t)yy/dt > —2eM + 2|y(r*)y'(r*)|]a(t) dt

Zo To

Therefore

Mz =M+ 2 (x.) [ a() di= oo

X0

97



Similarly if we multiply the inequality (3.1) by y’ < 0, then we get

2y%(z) > 2ey + 2fa(t)yy'dt > —2eM + 2|y(x*)y’(x*)|foz(t) dt

and

M?* > —eM + y'Q(:E*)foz(t) dt = oo
Lo

This contradicts the hypothesis that M is a constant.
Thus, we have sup |y(z)| > ke. Obviously, wy(z) = O satisfies the Eq. (1.1) and the zero

T2X

initial condition (1.2) such that sup |y(z) — wy(z)| > ke. Therefore the Eq. (1.1) is

z>
instable in the sense of Hyers and Ufam.
Example 3.1 Consider the equation

y"(z) + ylz) = e’y (3.3)
with the initial condition

Y(zo) = 0 = y'(z)) (3.4

We will show that zero solutionwy(z) = Oof the equation (3.3) will satisfy the
inequality |y(x) — wg(z)| > ke. On the contrary, suppose that there exists ¢ > 0
such that sup |y(x) — wy(x)| < ke. Then we can find a constant M > O such that

z2>Z

M = sup |y(z)|.

2>
Multiply the following inequality by y’ > 0 and then integrate
<y +y—-ey<e

we obtain
T

—2ey <y Hx) + y*(z) — 2 | yy'dt < 2ey
Zo
If we assume that |y'(z)| <|y(z)| forall = > z,, then we get
> ey + 2 |etyy'dt > —2ey + 2y(x,)y'(z,) f e'dt]
Zo

o
(0.0

Since the integral f e'dt diverges, then for z — oo, we get
Zo

M? = .
Similarly if we multiply the inequality (3.3) by y’ < 0, then we get

2 (@) > 2ey +2 [alt) yy'dt > 2ey + 2y(w)y () [e'at
Ty Ty

and for sufficiently large z we obtain

T

2 >eM + 2u(z, )y () fetdt = 00

Zo
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Obviously, wy(z) = O satisfies the equation (3.3) and the zero initial condition (3.4)
such that sup |y(x) — wy(x)| > ke. Therefore the equation (3.3) is unstable in the

T 2> Ty
sense of Hyers and Ulam.
Theorem 3.2 Suppose that y € C?(I) and |y/(z)| <|y(z)| forall & > xy, such that
satisfies the inequality

[y +y— M) y*|<e (3.5)
with the initial condition
y(z0) = 0 = y/'(20) (3:6)
o
If f h(t)dt diverges, then the Eq. (1.3) is unstable in the sense of Hyers and Ulam.

Lo
Proof. On the contrary, suppose that there exists € > 0 such that
sup |y(z) — wy(x)| < ke. Then we can find a constant M > 0 such that

T2>x)

M = sup |y(z)|.
T2
From the inequality (3.5) we have
—e<y"+y— hz) vy’ <e (3.7)

Multiply the inequality (3.7) by 3" > 0 and then integrate we obtain
—2ey <y’ *z) + yi(z) — th(:r) yPy'dt < 2ey
Zo

From which we get that

22 (w) > ~2ey +2 [h(t) y’y'dt = —2eM +2y°(w,)y'(x.) [alt)dt

Lo Ly

oo
Since the integral | a(t)dt diverges, then for x — oo, we get
Zo

M? > —eM + y*(z,) fa(t) dt = 0o

Ty

Similarly if we multiply the inequality (3.7) by 3" < 0, then we get

2y%(z) > 2ey + 2foz(t)y*3y’dt > —2eM + 2|yﬁ($*)y'(x*) |fa(t)dt, for any

Lo o
T > T, .
And for sufficiently large = we obtain

M? > —eM + |y (z,)

ja(t) dt = o

So we conclude that sup |y(z)| > ke. Obviously, wy(x) = O satisfies the Eq. (1.3) and
T>T)

o |o —wy(z)| > ke. Therefore the Eq. (1.3)

T>1y

the zero initial condition (1.4) such that

is unstable in the sense of Hyers and Ulam.
Example 3.2 Consider the Eq.
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3/ 2

" Y
y'(e) +ylz) = = | (3.8)
with the initial condition
y(zo) = 0 = y'(x) (3.9)
We will show that zero solution wy(z) = 0 of the Eq. (3.8)will satisfy the inequality
|y(x) — wy(x)| > ke.On the contrary, suppose that there exists € > 0 such that
sup |y(z) — wy(x)| < ke. Then we can find a constant M > 0 such that
>z,
M = sup|y(z)|.
T>7)
Multiply the following inequality by 3’ > 0 and then integrate
3/2
—&‘Sy”+y—x+1§6 (3.10)
we obtain
12 2 [ 3/3/2 /
—2ey <y x) +y (z)—2 t+1ydt§25y
Lo

If we assume that |y/(z)| <|y(z)| forall # > z, then we get
. .3/2

P Y ! 3/2 ! dt
292 () > —2 2 dt > —2 2 3 L) | ——
V@) 2 ~2ey + 2 [Tyt > ey + 2wy [ 75
Ty Ty
o0
Since the integral f i diverges, then for x — 00, we get
g P ges, ) g
Ty
T dt
M? > —eM 5/2 Lo —_— =
>—cM+y (T)sz—l 00
Lo

Similarly if we multiply the inequality (3.10) by y/ < 0, then for sufficiently large x we

obtain
xT
f dt
—_— (X')
t+1

Lo

M? > —eM + 2|y/5/2(m*)

So we conclude that sup |y(z)| > ke. Obviously, wy(z) = O satisfies the Eq. (3.8)and the

T2>1

zero initial condition (3.9) such that sup |y(z) — wy(z)| > ke. Therefore the Eq. (3.8)is

T>xy

unstable in the sense of Hyers and Ulam.
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ABSTRACT

The objective of the current work is to extend the thought of Q-neutrosophic soft sets to fields.
In this paper, we define the notion of Q-neutrosophic soft fields. Structural characteristics of it
are investigated.

Keywords:neutrosophic soft field; Q-neutrosophic soft field; Q-neutrosophic soft set

1. INTRODUCTION

Fuzzy sets were established by Zadeh [20] as a tool to deal with uncertain data. Smarandache
[16] initiated the neutrosophic idea as a new extension of the fuzzy set. A neutrosophic set (NS)
[15] is a mathematical notion serving issues containing imprecise, indeterminate, and
inconsistent data. In [11], Molodtsovintroduced the soft sets as another way to handle
uncertainty. Since its initiation, a plenty of hybrid models of soft sets have been produced,for
example, fuzzy soft sets [14], neutrosophic soft sets (NSSs) [9]. NSSs were extended to Q-
neutrosophic soft sets (Q-NSSs) [3] a new model that deals with two-dimensional uncertain
data. Q-NSSs were further investigated and their basic operations, relations and measures of
entropy distance and similarity were discussed in [1-3].Different hybrid models of fuzzy sets
and soft sets were utilized in different branches of mathematics, including algebra. This was
started by Rosenfeld in 1971 [14] when he established the idea of fuzzy subgroup. Since then,
the theories and approaches of fuzzy soft sets on different algebraic structures developed
rapidly. In this respect, severalauthors have utilizeddistinct hybrid models of fuzzy sets to
differentdomains of algebra such as groups, fields, rings semigroups and BCK/BCl-algebras
[4,5,8,12,19]. NSs and NSSs have received moreattention in studying the algebraic structures
of set theories dealing with uncertainty. Bera and Mahapatra introduced the notion of
neutrosophic soft groups [6], neutrosophic soft fields [7]. Moreover, two-dimensional hybrid
models of fuzzy sets and soft sets were also applied to different algebraic structures. Solairaju
and Nagarajan [17] presentedQ-fuzzy groups. Also, Rasuli [13] defined Q-fuzzy subrings and
anti Q-fuzzy subrings, while Thiruveni and Solairaju introduced neutrosophic Q-fuzzy
subgroups [18].Inspired by the above works and to utilize Q-NSSs to different algebraic
structures, in the current paper, we define the notion of Q-neutrosophic soft fields (Q-NSFs)
and discuss some of its structural characteristics.

2. PRELIMINARIES
Here, we recall the basic definitions related to this work.
Definition 2.1. [3]LetX be a universal set,Q be a nonempty set andA S Ebe a set of parameters.

Letu'! QNS(X)be the set of all multi Q-NSs onXwith dimension [ = 1. A pair ([ o, A)is called a
Q-NSS overX, wherel: A — utQNS(X)is a mapping, such thatly(e) = ¢ ife & A.

Definition 2.2. [1]The union of two Q-NSSs([y, A)and(¥, B)is the Q-NSS(4,, C)written

as(ly, A) U (W, B) = (Ag, C),whereC = AU Band for allc € C,(x,q) € X X Q, the truth-
membership, indeterminacy-membership and falsity-membership of (4,, C)are as follows:
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Tryc) (%, Q) ifce A—B,
Taoe) (%, @) = Ty o) (%, Q) ifceB—A,
maX{Tl"Q(c)(x; q), Tpo(c) (x,q)} ifceAnB,

Ir ooy (x, @) ifceA—-B,
Inge) (6, @) = { lwoo (x, @) ifceB—A,
min{IFQ(C) (x, Q); I‘FQ(C) (xp Q)} lfC EAN B,

Froo (@) ifceA—-B,
FAQ(C)(x'Q) = F“I”Q(C)(x!q) ifceB—A4,
min{FFQ(c)(x; Q); F‘PQ(C) (xr Q)} lfC € A n B

Definition 2.3. [1]The intersection of two Q-NSSs(/y,A)and(¥y,B)is the Q-
NSS(Ag, C)written  as(lp, A) N (W, B) = (Ag,C), whereC =ANBand for allc €
Cand(x,q) € X X Q the truth-membership, indeterminacy-membership and falsity-
membership of(4, C)are as follows:

Tag(e) (%, @) = min{Tr ) (%, @), Ty, ) (%, O},
Ingey (%, @) = max{lr, ) (X, @), Ty () (X, O},
Fp o0y, @) = max{Fr,c)(x, @), Fy ) (X, ) }.

3. Q-NEUTROSOPFPHIC SOFT FIELDS

In the current section, we present Q-NSFs and discuss several related properties.

Definition 3.1.Let (I, A) be a Q-NSS over a field (F, +,.). Then (I, A) is said to be a Q-NSF
over (F,+,.) if for all e € A, I (e) is a Q-neutrosophic subfield of (F, +,.), where I (e) is a
mapping given by I, (e): F X Q — [0,1]3.

Definition 3.2.Let(F, +,.)be a field and(ly, A)be a Q-NSS over(F, +,.). Then, (I, A)is
called a Q-NSF over(F, +,.)if for allx,y € F, q € Qande € Ait satisfies:

(1) Trye)(x +¥,9) = min {TFQ(e)(x: Q).TFQ(e)(y,Q)},lrQ(e)(x +y,q9) <
max {IFQ(e)(x, D, Irge v, Q)}, Froe(x +¥,q) < max{Fr, (%, ), Frye) (v, O }-

(2) Trye)(=x,9) = Tr,e)(x, @), Ity e) (=%, @) < It ) (X, @), Frye) (=%, @) < Fr,e)(x, q).

) 0 0 0 0 )

() Try(e)(x-y,q) = min {TFQ(e)(x:CI),TFQ(e)(Y:CI)}JrQ(e)(X- Y,q) < maX{IrQ(e)(X'CI),
Ity ) q)}, Frye)(x-y, @) < max{Fr,e)(x, @), Frye) (v, D }-

(4) TFQ(e)(x_ll Cl) = T[‘Q(e)(x, CI)JIFQ(e)(x_lr Q) < IFQ(e)(x' Q); FFQ(e)(x_lv Q) <
Fryce)(x, @)

Example 3.3. LetF = (R, +, . )be the field of real numbers and 4=N the set of natural numbers
be the parametric set. Define a Q-NSS(F 0 A)as follows forq € Q,x € Randm € N

0 if x is rational
=11
Tromy (%, ) {— if x is irrational,
I9m 1
IFQ(m) x,q) = Il ~3m if x is rational
0 if x is irrational,
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3 . . .
FFQ(m)(X, q) = 1+ m if x is rational

0 if x is irrational.
It is clear that (T, N) is a Q-NSF over F.

Proposition 3.4.Let (I, A) be a Q-NSF over (F,+,.). Then, for the additive identity Op and
the multiplicative identity 1, for all x € F,q € Q and e € A the following hold
(1) Trye)(0r, @) = Trye) (X @), Irye) (OF, @) < Irye) (X, @), Fry(e) (O, @) < Frye) (%, Q).
() Troe)(1r @) = Trye) (X @) Ity (e)(Lr @) < Iry(e) (%, @)y Frye)(1F, @) < Fryey (%, Q).
for x # Op.
(3) Ty (Or @) = Trye)(1r @, Iry(e) (O, @) < Iry(e)(1r, ), Frye)(OF, @) <
Fro@e)(1r, ).

Proof.vx € F,q€ Qande € A
(D) Trye)(Or @) = Tryey(x = x,q) 2 min{Tr ) (X, @), Trye) (X, @)} = Trye) (%, ),
Iro(e)(0r, @) = Ity ey (X — x,q) < max{Ir,e) (%, @), Iry ) (%, D)} = Irye) (%, Q)
Frye)(0r, @) = Frycey(x — x,q) < max{Fr, ) (%, ), Frye) (%, @)} = Fr ey (%, @)
(@) Trgee)(1r @) = Trg(e (e x5 @) = min{Try o) (2, 0), Tro(e) (0, @)} =
Troe) (% @), Iry(e)(1r, @) = Irgee)(x-x74, @) < max {II"Q(e)(x;Q):IFQ(e)(x»Q)} =

Iro@ @), Fry@e(1r @) = Frye)(x.x7,q) < max {FI"Q(e)(x‘ q), FrQ(e)(x,Q)} =
Frye) (6 @).
(3) Follows directly by applying 1. i

Theorem 3.5.4 O-NSS (I, A) over the field (F,+,.) is a Q-NSF if and only if for all x,y €
F,qeQande€ A
(1) Trye)x =y, @) =2 min{Tr ) (X, @), Try )V, D} Irpe)(X — ¥, @) <
max{lr,cey (%, @), Irye) (Vs D} Froey(X — ¥, @) < max{Fr ) (X, @), Frye) (v, D)}
(2) Trye) ey~ @) = min{Try o) (%, @), Tro ) V) DY Irg ) (¥ ™1 @) <
max{Ir, () (%, @), Irye) ) D} Froe) -y ™ @) < max{Fry ey (%, @), Frye) v, -

Proof. Suppose that (Iy, A) is a Q-NSF over (F, +,.). Then,
Troe)(x =y, @) 2 min{Tr ) (X, @), Try ey (=Y, @)} = min{Tr, ey (X, @), Try ) (v, D}
Iroe)(x = ¥,q) < max{Ir,(e) (X, @), Iry(e) (=Y, @)} < max{lr,e) (X, @), Irye) (v, D},
Froe)(x =y, @) < max{Fr,e)(x, @), Fry(e) (=¥, @)} < max{Fr ey (X, @), Frye) (v, D }-
Also,
Troee) .y ha) =z min{Tr, ) (X, 4), Try(e) D) = min{Tr, ) (X, @), Try )V, 0}
Iroe) ey~ @) < max{Ir ey (%, @), Iry () ™ @)} < max{Ir ey (%, @), Iry ), D3,
Froe) (¥ @) < max{Frye) (%, @), Froe) ™1 @} < max{Fr, ) (x, @), Frye) (v, )3-

Conversely, Suppose that conditions 1 and 2 are satisfied. We show that for each e € A, (I, 4)
is a Q-neutrosophic subfield
Trye)(=%,a) = Trye)(OF — x,q) = min{Tr ) (0F, @), Try ey (%, @) }
2 min{Tr, ) (%, @), Trye) (%, D} = Trye) (X, Q).
Irg(e)(=%,0) = Iry(e) (O — X, q) < max{lr,e)(0r, ), Iry(e) (X, @)}
< max {IrQ(e) (%, @), Irge) (%, q)} = Irg(e)(x, @),
Fro@e)(=%,9) =rye) (Or = X,q) < max{Fr,e)(Or, @), Fry(ey(x, )}
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< max{Fr, ey (%, @), Frye) (X, @)} = Frye) (%, @)}
also,
Troe) X +5,q) = Trye)(x = (=¥), @) = min{Tr, ey (%, @), Trye) (v, D}
Iroey (X +¥,@) = Irye)(x = (=¥), @) < max{lr,(e) (%, @), Irye) (V) D)}
Froe)(x +¥,@) = Fry@e)(x = (=), q) < max{Fr, (%, q), Frye) (v, D }-
Next,
Troe) ™4 @) = Trye)(1r-x 71 @) = min{Tr, ) (1, @), Trye) (%, 0}
= min{Tr, ) (%, @), Trye) (4, D} = Trye) (X, Q).
Iroe (75 ) = Iryey(p-x71 @) < max{ir, ) (1, @), Iy ) (4, )}
< max{Ir,e) (%, @), Iry ey (%, @)} = Irye) (%, Q)
Fro@) ™4 @) =rge) (Ar-x71 q) < max{Fr ) (1r, @), Frye) (%, 0)}
< max{Fr, ey (%, @), Frye) (%, @)} = Frye) (%, @)}
and
Trye)(x.y,9) = TFQ(e)(x()’_l)_lyCI) 2 min{Tr ) (X, @), Trye) V) D},
Iry@ (3, @) = Irg@(x (™)™ @) < max{lr, ) (%, @), Ir g0y 0, O3,
Froe) (.7, @) = Fr ooy (x (™) 7 @) < max{Fr ) (%, @), Fry )0, O)-
This completes the proof. O

Theorem 3.6.Let (I, A) and (¥, B) be two Q-NSFs over (F,+,.). Then, (I, A) N (¥y, B)
is also Q-NSF over (F,+,.).

Proof. Let (Iy, A) N (Wy,B) = (Ag,ANB).Now,Vx,y €EF,q€Qande EANB,

Trge)(X = ¥,q) = min{Tr ) (x = ¥, @), Twye) (X — ¥, @)}
2 min{min{Tr, ) (X, @), Tr(e) &V, @)}, min{Ty ey (X, @), Tw ey (v, 4) 3}
= min{min{Tr, ) (%, @), Tw ) (%, @)}, Min{Tr, ey (v, @), Tw ey (v, 4) 3}
= min{Tp, ey (%, @), Tay(e) (v, D)3

also,

Inge)(x =¥, q) = max{lr, ) (x =¥, @), lyye)(x — ¥, 0)}
< max{max{Ir ) (¥, @), Iry(e) (v, O} max{ly , ey (*, @), Iy () v, 03}
= max{max{Ir ) (x, @), Iy 4 (e) (X, @)}, max{Ir, ) (v, @), Ly () v, D)3}
= max{lp,e) (X, @), Inye) (V) D3

similarly, Fp, ey (x — ¥, q) < max{Fy, ) (X, 4), Faye)(V, @)} Next,

Tagey -y~ @) = min{Tr ey (2. Y™, @), Ty () (- ¥4 @)}
= min{min{Tr, ) (%, @), Tr o) &V, @)}, min{Ty , ¢y (%, @), Ty 5 (e) (v, @) 3}
= min{min{Tr, ) (%, @), T, e) (x, @)}, min{Tr, ) (v, @), Ty 5 () (v, @) 3}
= min{Ty, ) (%, @), Ty )V, D)3,

also,

IAQ(e)(x-y_l'Q) = max{IFQ(e)(x.y‘l,q), Iq,Q(e)(x.y‘l,q)}
< max{max{lr ) (¥, @), Iry(e) (v, O} max{ly ey (*, @), Ly () v, 03}
= max{max{lr ) (¥, @),y (e) (X, @)}, max{Ir, ) (v, @), Iy e) v, 03}

max{ly,e) (%, @), Inge) (v, D'}

similarly, we can show Froee) (x.y L < max{FAQ(e) (x,9), FAQ(e)(y,q)}. This completes

the proof.

Remark 3.7.For two Q-NSFs(Ip, A)and(¥y, B)over(F,+,.), (I, A) U (¥g,B)is not
generally a Q-NSF.

For example, let F = (Q, +,.), E = 2Z. Consider two Q-NSFs (I'p, E) and (Wy, E) over F as
follows: forx € Q,q € Qandm € Z
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T 0. ifx =4tm,3t € Z,

Tom) (%, @) = {0 otherwise,
I 0 ifx =4tm,3t € Z,

roum (4, @) = {0 otherwise,
F _ (040 ifx =4tm,3t €Z,

roum (%, @) = {0 otherwise,

and

0. ifx = 6tm,3t € Z,

Ty qam (6, ) = {0 otherwise,
I _{0 ifx = 6tm, 3t € Z,

wo(am) (%, 4) = 0.50 otherwise,
F x,q) = {0.20 ifx = 6tm, 3t € Z,

wom) X q 0.40 otherwise.

Let (Tg,A) U (Wg,B) = (Mg, E). Form = 2,x = 8,y = 12 we have

Tagey(8 =12,q) = Tpy(8) (=4 @) = max{Tr,(s) (=4, 9), Ty, (8)(—4 @)} = max{0,0} = 0
and

min{Ty,8)(8, ), Ta,8)(12,q)}

min{max{Tr, ) (8, @), Tw,(8)(8, @)}, max{Tr s)(12,q), Tw,8)(12,q)}}
min{max{0.50,0}, max{0,0.7}}
min{0.50,0.70} = 0.50.
Hence, Ty (s 8—-12,9) < min{TAQ(g) 8, q), Trq(8) (12, 9)}. Thus, the union is not a Q-NSF.

6. Conclusion
We have introduced the concept of Q-neutrosophic soft fields. We have investigated some of
its structural characteristics
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ABSTRACT

In this paper, an enhancement to the beam deflection problem is performed through the substitution
of q(x) by :—4 , this substitution is performed to reduce the beam load intensity, also the enhanced

beam deflection problem is solved using two new transforms, which are complex AL-Tememe and
AL-Tememetransforms. the results (solutions) from complex AL-Tememe and AL-Tememe
transforms are compares to each other, both transforms have the ability to solve the enhanced
problem of the beam deflection.

Keywords: Complex AL-Tememe transform; AL-Tememe transform; deflection of the beam,
differential equations; famous function; Inverse of AL-Tememe transform; Inverse of complex
AL-Tememe transform; uniform distributed load.

6. INTRODUCTION

The beam deflection problem is widely discussed in many books [7-11], where many methods
are used to solve that problem, however the use of Al-Tememe and complex Al-Tememe
transforms never discussed before. AL-Tememe and complex AL-Tememe are two
transforms that emerged at 2016 and 2018 respectively, these transforms can solve some
types of deferential equations, which can be used in many scientific fields, such as physics,
engineering and bio-medical signal processing [2.,4,5,6]. In this paper, the problem of
deflection of beam is solved using complex AL-Tememe and AL-Tememe transforms, and
the solutions from these transforms are compared.

7. BASIC CONCEPTS

It is necessary to mention some relevant definitions, functions, proprieties and
theorems to make the calculations clearer.

2.1Definition of complex AL-Tememe transform [2]:
A complex AL-Tememe transform for the function f(x), x > 1is defined by the integral:

T[f ()] = [ x"Pf(x)dx = F(ip).
Such that this integral is convergent in [1, o], p is a positive constant, and x ~'P is the kernel of
this transform and { = v—1.

2.2 Definition of inverse complexAL-Tememe transform [2]:
If T¢[f(x)] = F(ip) represents a complex AL-Tememe transform off (x), then f(x) is said to

be the inverse the AL-Tememe transform and it can be written by: f(x) = T (F (ip)).

2.3 Propriety of complex AL-Tememe transform [2]:

A complex AL-Tememe transform linear: T¢(Af(x) *+ BTC(g(x)) =AT°(f(x)) £
BTC( g (x)) . Where A and B are constants, the function f(x) and g(x) are defined when x >
1.

2.4 Complex AL-Tememe transform of some famous function [2] :
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c _ 1
LT =0

1
Cc ny —
2. T°(x") = ip—(n+1)

, nER

2.5 Inverse of complex AL-Tememe transform of famous function [2]:

D TC_l (—11-1';7) =1

2) T<' (ip—(1n+1)) =x" , n€eR.
3) T (ﬁ) = In(x).

2.6 Theorem [2]:

Let y(x) be defined function for x > 1, and its derivatives y'(x), y"" (x), -+, y™(x) exist,
then: T[x"y™ (x)] = =y ™ (1) = (ip = n)y ™2 (1) — - = (ip —n)(ip -
n—1)).-.(p=2yD)+ (p—n)(ip—(n—1) - (ip—1F@p) nez.

2.7 Definition of AL-Tememe transform [1]:
Al-Tememe Transform for the function f(x); x > 1 is defined by the following integral

T[f(x)] = [, 100 x"Pf(x)dx = F(p). Such that this integral is convergent in some region, p is
a positive constant, and x~P the kernel of Al-Tememe Transform.

2.8 Definition of inverse AL-Tememe transform [1]:

Let f(x) be a function where x > 1 and T[f (x)] = F(p), f(x) is said to be an inverse for
Al-Tememe Transform and written as:T ~*[F(p)] = f(x), where T~ returns the transform to
the original function.

2.9 Propriety of AL-Tememe transform [1]:

The transformation is characterized by the linear propriety, that is: T[Af (x) £ Bg(x)] =
AT[f(x)] + BT[g(x)] where A and B are constants, the functions f(x) and g(x) are defined
when x > 1.

2.10  Table of selected Al-Tememe transforms [1]

Function f(x) F(p) = f x"Pf(x)dx Region of convergence
1
k,k=C tant k >1
,k = Constan — D
1
a —
x*,a €R p—(atD p>a+1
1
Inx — >1
(17 P

x%Inx,a €R p>a+1

[p—(a+DJ?

DEFLECTION OF THE BEAM PROBLEM|3]:

e Ifabeam of length L with rectangular cross section and homogenous elastic material (e.g.
steel) is considered as shown in figure (1).

e And if aload is applied to the beam in vertical plane through the axis of symmetry (the x-
axis), the beam is going to bent.

e If a cross-section of the beam cutting the elastic curve in p and the neutral surface in the
line AA’.
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(a) Figure (1)

Then the bending moment M about AA’ is given by Bernoulli- Euler law.
El

M=—(31
—(3.1)

Where:

E = modulus of electricity of the beam.

I = moment of inertia of the cross-section AA’.

R = radios of curvature of the elastic curve at p(x, y).

If the deformation of the beam is small, the slope of the elastic curve is also small so that

3

1+(2)°P

it is possible to neglect (%)2 in the formula R = %.

dx?

. 1
For small defection, = -

axZ
2
Hence, (3.1) bending moment M = EI %.
— M _ g2y
Shear force = — = e
. . d°mM _ d_y _
Intensity of loading= o - Elo 2= q(x).

The sum of moments about any section due to external forces on the left of the
section, if anti-clock is taken as positive and if clockwise is taken as negative.
The most important supports corresponding boundary conditions are:

Simply supported as shown in figure (2):

Figure (2)
No deflection and bending moment exist. Then:
y(0) =0,y"(0)=0.
y)=0,y"()=0.
Completed atx = 0, free at x = [ as shown in figure (3).

Figure (3)
At x = 0, the deflection and slop of the beam being both zero. At x = 1, there are
no bending moment and shear force. We have, y(0) = y'(0) =0, y''(D) =

yu/(l) =0.



3) Clamped at both ends: The defection and the slop of the beam being both zero, then:
y(0) =0, y'(0) =0.
yO=0y1=0.

4. THE DEFLECTION OF A BEAM CARRYING UNIFORM DISTRIBUTED LOAD
Assume that a uniform loaded beam of length L is supported at both ends, as shown in
figure (4). The deflection y(x) is a function of horizontal position X, it is given by the

. . . d*y 1
differential equation: =54 (x)4.1)

Beam

BARAA

Ground ‘y L |

Figure (4)
Where g (x) is the load per unit length at point x. it is assumed in this problem that
q(x) = q (q is a constant).
The boundary conditions are:
(i). Nodeflectionatx = 0 and x = [.
(il).  No bending moment of the beam at x = 0 and x = [.

33’,((%:3} no deflectionat x = 0 and x = |
3;,,,(((3:8} no bending moment at x = 0 and x =1

4.1 Solving the deflection of a beam carrying uniform distributed load using complex AL-
Tememe transform
Complex AL-Tememe transform is used to solve the problem of deflection for a beam

that carrying a uniform distributed load. After substituting each q(x) by x—14 equation (4.1)
becomes: x*y™® — % =0 y(1)=0,y"(1)=0

By taking a complex AL-Tememe transform to both sides:

T¢(x*y®) —T° (E—lL) =0,

—y"' () = (ip —Dy" (D) — (ip —Hp — 3y’ (D) — (ip = H(ip = D(ip - 2)y(D) +
(ip =D (p=3)(p—2)>p - DT () — %Tc(l) =0.

T¢(y) = y'"' @ y'@) 1 1

(ip-9)(ip-3)(ip-2)(ip-1) ' (p-2)(ip-1) = EL’ (ip—4)(ip-3)(ip-2)(ip-1)?
By taking the inverse of a complex AL-Tememe transform to both sides:

P y'"'(1) 1 y'(1)
y=T [(ip—4)(ip—3)(ip—2)(ip—l) [(ip—z)(ip—l)
L et [ 1
EL’ (-2 (ip—3) (i-2)(ip—1)2 °
Now, we take

1 A B C D
. - - . =- + - + - + -
(p—Hp-3)(p-2)(@p—-1) ip—-4 p-3 ip-2 ip-1
After simple computations, we get:

A= p=-Ltc¢c=1p=-1
6 2 2

6
Then

1 1 1
¢t 1 _ pct 6 ¢t __2 ¢t 2
T [(ip—4)(ip—3)(ip—2)(ip—l)] =T (ip—4>+T < ip—3>+T (ip—2)+
1
e V| 31,21, 1],
T ( ip—l)_[6x 2% +2x 6]y )
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4.2
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Also, we take

1 A B
(ip-2)(ip-1)  ip-2  ip-1~
After simple computations:
A=1,and B=-1.
Then:

i s R e R e R R

As well as, we take
1 A B c D E

(ip—4)(ip-3)(ip-2)(ip-1)? ~ ip—4 = ip-3  ip-2  ip-1  (ip-1)%

After, simple computations

A== ,B=-1,C=2D=-2,FE=—=
18 4

Then:

- & _ EA R
(ip—4)(ip—3)(ip—-2)(ip—1)? tp—4

[lp 1] [(m 1)2]—(59‘ -3 +5x—§—zln(x>)-a
Then:
y=(%x3—§x2+%x——) ")+ (x— 1)y’ (1)+( x —%x2+5x—§—
1 1
g1n(x)) = (4.2).

To use the boundary conditiony’’ (1) = 0, and by taking the second derivative of (4.2)
then:

_— _—x3 4 —
y(x) = 24-Elx + 24E1x (4.3).

The above equatlon gives the deflection of the beam at a distance x.

1

To find the maximum deflection, put x = % in equation (4.3).

Solving the deflection of a beam carrying uniform distributed load using AL-Tememe
transform
AL-Tememe transform is used to solve the problem of deflection for a beam that carrying

a uniform distributed load. After substituting each q(x) by x—14 equation (4.1) becomes:

1
xty®—==0 y1)=0y"(1)=0
By taking AL-Tememe transform to both sides:
4@ 7 (L) =
rlxty®)=7(2) =0
"D =-@-Dy"O-@-D0 - 3Yy' M -@-HDe-3@-2y1)+
-DP-3@-2)@-DTY)-;T1) =0.
() = "' y'@ 1 1
P-H@P-3)-2)(p-1)  @E-2)(p-1) EL @-H@-3)@-2)(p-1%
By taking the inverse of AL-Tememe transform to both sides:
— -1 y"'@ g Y@ 1,1 g 1
y=T [(p—4)(p—3)(p—2)(p—1)] +T [(p—Z)(p—l)] T [(p—4)(p—3)(P—2)(p—1)2] '
Now, we take
1 _ A L2
P-DG-DE-DE-D  p—4 3 =z p1’
After simple computations, we get:

A= p=-Ltc¢c=1p=-1
6 2 2 6

Then

1 1
-1 1 _ -1 -1 __2 -1 1| _ _&
T [(p—4)(p—3)(p—2)(p—1)] =T <p—4) +T < p—3> +T <p—2> +T < p—1>'

Also, we take

Oy | =
N | =




_tr _ A, B
(r-2)(-1) p-2 p-1
After simple computations, we have:
A=1,and B=-1.
As well as, we take:

1 _A 4B, C D
P=-DE-3@E-D@-D?  p-4 p-3 p-2 p-1 @E-D?
After, simple computations, we have:

1 1 1 11 1
A=—B=—-—=(C=-,D=—-=E=—=
18 4 2 36 6

Now:
-1 y"'(l) _ l 3_1 2 l _l "
[(p—4)(p—3),(p—2)(p—1)2]_ 6 X 2% +2x e)y )
Also, T~ [—2 8] = (x — 1)y,
50 [(p—zxp—l) ) (x =Dy L
1y =t,3_ty2,1, 11 _1 1
And’EIT [(p—4)(p—3)(p—2)(p—1)2]_ sx 4x +2x 36 61nx]51'

; i3 1,21, L, m N D UYTANTN v B o BT VR S
Fmally,y—[6x SXT X 6]y +(x -1y +[8x SXT X ——
1 1
-Inx]—.

6 El

5. Conclusions
There are many solutions to the beam deflection problem, however Al-Tememe
transforms (Al-Tememe and Complex Al-Tememe) are never used before to solve this
problem. The previous computations solved the beam deflection problem through the
reduction of load that provided over the beam, by dividing the beam deflection equation

11 .
by x*to became y™* = gt Both transforms gave the same results therefore it is
possible to use either of them to solve the beam deflection problem.
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ABSTRACT

In this article, we introduce a new subclass of meromorphic bi-univalent functions, using
(p,q) — Jackson derivative. We obtain the general coefficient estimates |a,,| for such
functions belonging to this subclass and examine their early coefficient bounds by applying
Faber polynomial coefficient expansions.

Keywords: Analytic functions, Meromorphic functions, Bi-univalent functions, Faber
polynomial, g-calculus.

1. INTRODUCTION

We start by letting 2 ={z:z€ Rand1 < |z| < 0},and X be the class of meromorphic
functions of the form

h(z) =z +a, + Zimo1 (1)
that are univalent in £2. Its well known that every functionh € ¥ has an inverse h™! defined
by
ht(h(z) =2 z€n

h(h™ (W) =w, p<|w| <oo,u>0
For a brief history in the class X, you can see [2,4,12,14]. A univalent function in (2is
said to be bi-univalent if its inverse map is also univalent there. The functionh € X 1is said to

be bi-univalent and meromorphic if h~! € X. The family of these functions is denoted by

. 1 1 . (2m-1)!
Ym. Springer [14] proved |ag| < 1,|as + Ea12| <3 and conjectured that |ay,;,—1] < o —r
for (m=1,2,...). The bounds for general coefficients |a,,| of meromorphic bi-univalent

functions were obtained by Hamidi et al. [3] and they examined their early coefficient bounds.
The Faber Polynomial expansion of the inverse map of h € X of the form (1),

_ b bybo+b b12+b1bo%+2bgby+b
<p=h1:w—b0——1—1°22_1 10302 3+---=w—bm—
w w w (2)

where

Kty = mbo™ by +m(m — 1)by™ b, +~m(m — 1)(m — 2)by™ > (bs +
bf) + PEREEEEE by by + 3byby) + S5 b H.

and Hjwith (5 <j<m) is a homogeneous polynomial of degree j in the variables

by ,b,,...,by. (see [1]).

€)

* Abdullah Alsoboh
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The q — calculus has attracted the attention of researchers due to its several applications
in different branches of mathematics, especially in geometric function theory. Jackson ([10,11])
initiated and developed the application of q — calculus. Chakrabarti and Jagannathan defined
Jackson (p, q) —derivative as a generalization of g-derivative (see [8]). Al-Hawary et al. [5]
introduced a new differential operator defined by the Jackson’s (p,q) —derivative. Some
applications of (p, q)- differential operators are studied by Altinkaya and Yal¢in [6] and Araci
etal. [7].

For the expedience, we present some definitions and concepts of (p,q) —calculus that

were used in this article by assuming p and q are fixed numbers such that 0 <p < q < 1.
h(pz)-h(q2)
—_— ,z# 0
Ipgh(z) =1 -z . )
d,ah(0) = h'(0) ,z=0

provided h'(0) exists, where the symbol, [m],, ;denotes twin-basic number given by

[m]p.q = %' [O]p,q =0, [1]p,q =1 (5)
Note that: For 0 < g < 1 and z # 0, we have

— _ h(@n)-h(2) -
* 014h(2) = 9,h(2) = T for more details, see [10]

1-q™ et
b [m]l,q = [m]q = 1_qq =25 q.

It's clear that for functionhof the form (1), we have

200 _[m]p,q A
ap.qh(z) =1+ ) (pq)m Zm+1'
m:

For0<v<1, £€>1, and h € ¥, we define new subclass of meromorphic bi-univalent

functions, denoted by BX(v, §; p, q)as:

Definition 1.1: A function h given by (11) is said to be in the class BX(v,¢; p, q)if the
following conditions hold true

Re {(1 -ty fa,,,qh(z)} >v,(z € Q). (6)
and
Re{(1 - Z2 + £0, ,0(w)} > v, (w € ). (7)

where 0 <v<1,§>1,andp = h™L.
We note from Definition 1.1 that

I 5o |RA=O 2+ £0,h(@)] > v
Bi(v,&p,q) ={h:h d . S
Hm B2(v,&;p.q) € Zan Re[(1 — f)$+ E9,0(w)] > v v 6o

Furthermore
Re[(1-§) "2+ ¢n'(2)] > v
Re[(1 - O E2 1 £ (w)] > v
where the class BX (v, §) is defined and studied by Hamidi [3].

In this paper, we obtain the bounds for the general coefficient |a,,| of the class of

;i_)rP_BZ(v,E;q) ={h:h€Xand { } = BIX(v,§)

meromorphic bi-univalent functions BX (v, &; p,q) . We also determine bounds for |a,],|a;]|,
|az| and for the combination |a, + aya4 |using Faber polynomial expansions.
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2. PRELIMINARIES

In the following Theorem, we introduced an upper bounds for |a,, |for the class
BX(v.§p, q).

Theorem 2.1: Let h as in (1). For § 21,0 < v < 1landifth € BE(,§;p, q), anday =
0, k=0,1,.... m— 1,then

2p™q™(1-v)
|am| E-DpMqm+&[mlpq° (8)

Proof.Let h € BX(v,&;p,q)as in (1) then we have

h(Z)

1-8 24 ¢9,,h(z) =1+ 35 0(1 - (14 “”;};g))%. )
and for ¢ = h™1, we have

1-9E2 4 £0, ,0(w) =1 +z;°,°;=0<1 -¢(1 +%)>wfn+l =1-(1- 9=

(10)
o [m]
Zm:1<1— g1+ ’:;;;)) Kty1 (o, by oy byn) =

On the other hand, since h € BX(v,&;p, q), according to condition (6)implies that there
exists a positive real part function g(z) =1+ Y= ¢z~ ™ € X. So that,

a- f)ﬁ+ §0pqh(z) =v+ (1 -v)a(2)

1
=v+ (1 - V) Zm:l Kr}l(cll C2yuney Cm+1) Zm
Similarly, for the inverse functionp = h™land according to condition(7), there exist a
positive real part functiony(w) = 1+ Yp=; djyw™™ € X. so that:

an

1- S)M+ §0pqp(w) =v+ (1 —-v)x(w)

1 (12)
—v+d-v) Z Kh(ds, gy i)

m=1
Comparing the corresponding coefficients of (9) and (11) yields to
[m] o
<1 3 (1 + pm(;’:l)> am =1 =) Xn=1 K (€1, €200y Cim)-
and similarly from (10) and (12) note that for a;, = 0; 0 < k < m — 1witha,, = —b,,,, we
obtain:
1= 8ay=-1-v)d,

1+pmqm

m 77,?.,_1((10, Ay, ---y am) = _(1 - V)K‘IJT-l(dl' dZ! Ry dm+1)

and so

[T PR
B [m],,,q>] o
[1 3 (1 + g [ om = —(1 = V)i

By taking the absolute values of each above two equations and applying the
CaratheodoryLemma(e.g., [2,9]).|¢;n| < 2 and |d,,,| < 2 form = 1,2,3,...,we get
Ia I A-Vlemeal (1_V)|dm+1| < 2p™q™(1-v)
m =
o] o] =

(14)
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Corollary 2.1 Leth asin (1). For £ 21,0< v <1 andif h € B¥X(v,§;q), and a;, =0,
k=01,.... m—1, then

2q"(1—-v)
Ay < ,m=1.
onl = T T g,

Corollary 2.2 [3]Let has in (1). For £ 21,0< v<1 andifh € BX(v,§), and a;, =0,
k=01,...,m—1 then

2(1-v)
Em+1)-1’ m =1

By relaxing the coefficient restrictions imposed on Theorem 2.1 we obtain estimates for
early coefficient of functions h € BX(v, &; p, q), and the combination |a, + aga,|.

lam| <

Theorem 2.2 Foré =1, 0 < v <1, and h of the form (1) be in the class BX(v,&;p, q), then

we have the following consequence.
2(1—-v)
laol < _1
2pq(1—-v)
a S )
) < Fg + D —pa
2p*q*(1 —v)
£ +pq +q*) —p*q¥
2p*q*(1-v)
§®* +pq +4q*) —p*q*
Proof. Let h € BX(v,&;p,q) as in (1), and compare the Egs. (9) and (11) for m = 0,1 and
m = 2, we get

laz| <

la, + a,a0] <

1- f)ao =(1-v)q (15)

1—5(1+i) a, =1 —v)c, (16)
pq

(1 s (%)) - (e an

and from Equations (10) and (12), for m = 2, we have
~(p°¢* = $@* +pq + %) (az + aoay) = p*q*(1 —v)d; (18)

By solving equations (15), (16), (17) and (18) for aq, a4, a, and a, + aga,, respectively,
and taking the absolute value then applying Caratheodory Lemma, we will get
_-vlal_20-v)

T
.| = pad —wlel _ _2pql—-v)
lpg — (g + DI~ $(pq + 1) —pq
| = PCA=Wlesl i)
Ip2q? — E(@*+pq + qH)| ~ E(? + pq + q*) —p?q?
and

2p%q%(1-v)

a, + a,aq| < —21~——
la; + a,a,] E(2+pa+qH)-p2q?

By letting p — 17in Theorem 2.2, we obtain the following consequence.
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Corollary 2.3 Let h of the form (1) be in the class BEX(v,&; q), and for § = 1and 0 < v <
1 then

2(1-v)
1) Ia()l < i1’
2q(1-v)
<L —— 7
2) laal = E(q+12)—q’
2q°(1-v)
3 < —1 - 7
) laz| < £(1+q+q>)-q?

2q*(1-v)
4) la; + aja0] < T+qra—q*

Forq — 17in Corollary 2.3, we obtain the following consequence.

Corollary 2.4 [3] Let h of the form (1) be in the class BX(v,§),and For § = 1and 0 <
v <1 then

1) laol < %,
2) |ail < %,
3) lap| < 2;:11}),
4) lay + aja,| < 23(;:11’)
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ON THE BEHAVIOR OFSOLUTIONS AND
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EQUATIONS
Xn XnYn Xn Xn—-1Yn
X =" =—"0" _ and X = = n-1'n
n+1 Xpeq T » Yn+1 Xpe1Ym—q +T n+1 Xp+1 » Yn+1 Xpe1Vn+1
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ABSTRACT

In this paper we study systems of difference equations numerically and theoretically. These
systems were considered by many researchers. We will focus on the general form and the limits.
We consider different orders of the difference systems. We use in certain cases the computer to
verify the limit properties.

Keywords: difference equations; limit; Gamma function

1. INTRODUCTION

Difference equations appear as natural descriptions of observed evolution phenomena because
measurements of time evolving variables are discrete and as such, these equations are in their
own right important mathematical models. More importunately, difference equations also
appear in the study of discrimination methods for difference equations. Several results in the
theory of difference equation have been obtained as more or less natural discrete analogues of
corresponding results of difference equation. Recently many researchers worked in the topic of
the behavior of the solution of difference equations. In the literature we can find the works of
them such as Kurbanli, ElI- Metwally, Amleh, Elabbasy and Elsayed.

In [7] El-Metwally, Elabbasy and Elsayed studied the following difference equation

1 A, }

X =max\— .
n+1 {xn ’ X1

They found the general form ofthe solution in some cases, also They proved that every positive
solution of this equation is bounded. In [3] Elsayed computed the general form of the solutions

of difference equation

Xn-s5
X =
LT g Xn—gtn—s

Further, he proved that every positive solution of this equation is bounded and

limx, =0
n—0o

In [1]Abuhayal considered the following system of difference equations:
Xn—1 Xn-1Yn

X, =L =
L T Ynt1 Xn—1Yn+7

Abuhayal calculated the solution for the system with the following initial values:
Xo=a,%x_1=b,y,=c
In this solution we distinguish between odd and even terms. In [8]Yaqoub considered the

following system of difference equations:

Xn—1 _ Yn

Xp+1’ Yn+1 = Xn—1Yn-1+7T

Yaqoub proved the following result: Let r =1 and a, b,c,d be real numbers. The solution

for the system with the following initial values:

Xn+1 =
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Xx.1=a% =0,y_1=b,y,=d
is
d _ _ d
ab+(n—1)ad+1'x2"+1 ¢ Y T ad 1

Xon =0 ,¥2n =

In [6] the following system of equations was studied by Ibrahim

Xn—-1
Xn+1\ _ [ Xp—1 tT
(yn+1) - Yn-1
XnYn-1tT

wherer is a fixed real number. With the following initial condition
Xo= bx1=c¢cYy,=ay.1=d.
In [6] Ibrahim proved the following result: Let a ,b ,c¢ ,d, r be positive real numbers. Then, the

general solution of the system is
b c
Xppg = ——= X = —_—
2k T Gbk)y T2k T Glok+1)
_ ack
Y2k ack+a Z%;z ch—it+1pi-1 l'[j-;f, G(ck—j)+rk ]'[ﬁ-‘;g G(ck-j)’
dbk+1

Y2kt = Gpktipqp Yl pk-iti it 122G k—N+rRI¥0 G(b.k—j)

where
G(,0)=c+r,G(c,i)=c+71rG(c,i—1).

In [4] Bany Khaled considered the system

v | J— Xn—1Vn-1
X = LV, g = e
n+l1 X, +r n+l1 Xy 1 Vntr

with initial values
x,=a,x,=0,y,=0b,
Hence, according to definition we obtain
Xy =0,y =0.
Bany Khaled proved an estimate for the solution. Based on it she proved: If a,b>0 and

> lsuch that a® <r, then ]lim Xy =0, %im Vora =0.
Y —00

2. MAINRESULTS

In this paper we consider thefollowing three systems

Xn XnYn
X =t =—20 (1
n+1 xn_1+r:)’n+1 xn—lyn—1+r( )
Xn Xn—1Yn
X = — = T 2
n+1 Xp+1 ’ Yn+1 9;71_1%1_‘_1 ey ( )
n—1 n—-1Yn-1
X = =—"—="1"-_(3
n+1 Xprtr Yn+1 X1 Vn—1+T ( )

We define

W@, )= Sh-otgery R =T(b) =T, D).

We verified the following result by Mathematica for p>0:

A 1 _ @-DRe-D _  (F+p)R(+p) (4)
J=0r(j+p) I'(p) I(f+1+p)
wheree is the Euler number (approx. 2.718) and I'(a,x) is the incomplete gamma function.

120



7.1. The limit of system (1)

We consider the system (1) just in case of positive initial values and ». We will study first the
following equation since this equation is separated than the second one.

Lemma 2.1.Supposex_1,v > 0,xo = a > 0. Thenx,, < ar™™, n=1,2, ...

Proof: We start with

Xo a a -
X, = = <-=ar?!
X_1+T  X_q+T T

sincex_; +r >1 > 0.

We consider this relation as basis step. We continue by induction: Suppose that x; < ar~* for
some integer k. Then according to definition and that x;_; > 0

Xk xp _ark a

Xyl = =
k+1 = i tr 1 r rk+1

After some calculations we prove

Theorem 2.24ssume r,X_1,Y_1, X0, Yo > 0. Then lim x,, = 0, lim y,, = 0
r—00 n—oo

We consider a special case, namely r = 0.In this case it is easy to compute the general solution.
If we take the initial values

X_1=a,xo=c,y_1=b,y,=d

Then we obtainforn = 1,2, ...

_ _ ra~2ncb _ _ 2% \2n
Xen—2 = E:y6n—2 = (C_z) T Xen-1 = & YVen-1 = (T) d,

and forn =0,1,2, ...

— — 2n ¢ c3\2ncd
x6n C; y6n - (aC) d’x6n+1 = ; ) y6n+1 = (7 E’
1 1
1 C 1 = —
Kensz=g Yonrz=(2) VG Xenss = 70 Yents = oymmrig

We notice that we have a periodic solution, which consists of 6 elements. This is an
essential change in the behavior of the sequence. It is an open problem, what will happen if 7 is
negative.

7.2. The general solution of system (2)

We study now the system (2) with initial values

Xo=a,X_1=b,y, =c.

We find that in general
a a™ thc
X, = . 1,yn =P—n,forn =1,2,..
Ppir =abc+ ((n—1a+1)B,, P, =bc+1.
Hence
B, = a"‘lbc[‘(n -2 +%) *xW(a,n—2)+2,
where

. a"'ZF(n -2 +¥)P1.

M%)
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We reachthe following result
Proposition 2.1 The general solution of the system (2) is

_a _ bc _a
Ta U Ther 1 T hat U
_ abce ' T(1+a HI(n+a™?)
In = m+at-DIm+ar-DR@H)-Ta@aHRn+at-1)+T(n+at-1)
Proof. We concluded previously
_ T+a™ a™ hc

In = I'm—1+a 1Y) a*1bcl(1+a HYW(an—2) +a*2(bc+ 1)

If we setp = 1%‘1 =1 + a~tin(4), then we obtainfor n=2, 3, ...

a~le(l'(a ) —T(a 1))

X1

W(a,n—-2)=

r1+at)
em—1+aHYTh—-1+aH)-Tn—-1+a"11))
B T(n+a1) '
y rl+ab) abc

“TTh—1+aDabl(+aHW(an—2)+bc+1
_abce”' T(1+a DI(n+a™")
- H

where
H=Tn—1+a Y +bc[In+aHR@H+In—-1+aH)—(an+1—-a)l(1 +
aHRm+a -] =Tn+a'-Da*((an+1-a)Rl@H+a)—(an+1—
Arl+a HR(n+a* —1=(an+1-a)(a”'T(n+a* = 1DR(@ ") - I1 +
aHR(n+at-1)+Tn+at-1) =
m+a'-1D)Tm+a-DR@H-Ta@aHRn+a ' =-1))+T(n+at-1)
since
Im+a HR@H+In—1+a ) =Tn+a!=-D((n—-1+aHR@)+1)=
Fn+a?*-1a((an+1-a)R@ ™) +a).0

Corollary 2.2 If a> 0, then the solution of the system (2) tends to
abcl(1+a™1)
eR(a™1)
Proof. We know
abce 'I'(1+a™1)

Yn = r(n+a=-1- (a1 F(n+a™'-1) -

(n+a1—1)( Y R(a1) - R(n+a1—1)+

I(n+a~1) I(n+a~1) I(n+a~1)
abce™I'(1+a™1)
-1y _ _TIa™ -1 _ 1
R(a ) (n+a=1-1) R(Yl ta 1) + n+a~1-1

Since
R(b) = T(b) =T (b, 1) = [, e *ub~"du,

[R(n+at—-1)| < fol w2y = — Oasn — o

n+a~1-1
So, we are donel

7.3. The general solution of system (3) in case r =1

We consider now the system (3) withthe following initial values

122



‘x—l :aaxo :C7y—1 :bayo :d

Proposition 2.3 If a> 0, thenthe general solution of the system (3) is
C a

S T T
- r'e)
P T )+ TOT e+ P (C+2,k=3)+ Tk + D+ )’
I'G)
Yokt = 77 ’ X ; . 1 fork=3,4,...
T+ TOCk+ YW (L +2,k=2)+T(k + ) a+ 1)
Proof. According to definition
X, a a _x,y, _ ab ab

xlz = = ’yl_ = =
x,+r a+r G(Q) x,y,+r ab+r H()

where we denote by G(n) (res. H(n))the denominator of x, (res., ). Since the variables

x, and y, are separated in the even and the odd cases we are going to consider just one case.

Now, we obtain

=X ¢ ¢ N _ G _ a _a

: Xo+Fr c+r G(2)’ } X +r  gy+r  a+rG() G(3)
__XVs ﬁ ;(}5)) _ a'b _ a’b
T Uxystr gt a'b+rG(H(S) H(T)

In general we denote by
G (a)= (r '+ Hr+Da+r =agj+1

since 7 =1. We conclude that
c a a™'b ckd

= % s X = m s Vakn = mabk = ma
H(W)=ab+r, HB)=a’b+rGO)H()=a’b+rG,(a)ab+r),
H(S)=a’b+rGB)H(3)=a’b+rG,(a)(a’b+rG,(a)ab+r))
= a’b+a’rbG,(a)+r’G,(a)G,(a)(ab+r),
H(7)=a'*b+rGS)H(5) = a'*b+rG,(a)(a’b+a’rbG,(a)+1 G, (a)G,(a)(ab +r))
=a'b+a’brG,(a)+a’r’bG,(a)G,(a) + G, (a)G,(a)G,(a)(ab+r).

Xok

We use the notation
B,(a)=]]G, (@
Jj=1

We rewrite

B
H * + =a‘'b+d’br 4

jjza Bla —

Thus the general form for k£ =3,4.,5,...
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B, (a)

k—i

& k=i in(a) !
D N R )ZBk,<>

k-1
HQ2k+1)=a""b+Y a"""br' +7*B, (ab+7),

Since ¥ =1
B (@)=]]G(@=]](@+D)
= =
But

[T+aD)=q""T(n+LHr" (%)
=0
Hence,

B, (a)= a™'T'(n+ ”7“)F_1 ),

o T [(k+1e) kz a 'T(}) -
B 1( a) ') Fa ""”‘F(k—i+”7“)

1+a 1+a 1
ba"' T(k + =ba""' T(k +
¢ ( a )z (ke a ),Z;l"(z+1)

k+le (a)z

r‘(k l+a)

HQk+1)=a""'b+ba*" T(k + 1+—")W( +2,k=2)+r*d" Tk + =T () (a+ %)

HQk+1)= a"“b(l +T(k+ 1Jr—c’))W(— +2,k=2)+a""T(k+ =T (L) (a+ %) :

3 pr(a™
Yol = T D1+ Tk + L+ a))WQR2+aLk—2)+Tk+ L+aD(a+bh)

Similarly we can prove the other case.[]
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ABSTRACT

This paper deals with a new version of weighted mixed estimator based on prior information in
stochastic linear restricted model for the unknown vector parameter when stochastic linear
restrictions on the parameters hold. The performance of the proposed estimator as a
generalization of the weighted mixed estimator (WME), the almost unbiased Liu estimator
(AULE) and the least squares estimator (LSE) has been given in terms of the mean squares error
matrix. Finally, numerical example from literature and simulation study have been given to
illustrate the results.

Keywords: Mixed model; Stochastic linear restrictions

1. INTRODUCTION

We consider the standard multiple linear regression model

Y=Xp+e, (D
Where Y is an n x 1 vector of observations on the response ( or dependent) variable, X is an n
x p model matrix of observations on p non-stochastic explanatory variables, 3 is a p x 1 vector
of unknown parameters associated with the p explanatory variables and € is an n x 1 vector of
residuals with expectation E(€) = 0 and dispersion matrix Var(e) = ¢2I,,.
It is well known that, the least squares is the best method for fitting model (1) . The least squares
estimator (LSE) is define as:

B =S"IX'Y, (2)
Where S = X'X. the LSE in (2) is unbiased and has minimum variance among all linear
unbiased estimators when it satisfy it's conditions and one of these conditions is no high
correlation between the independent variables. However, This is not the case many when the
multicollinearity is present where there are many results have proved that the LSE is no longer
a good estimator.
To reduce the effect of multicollinearity, several techniques have been proposed. One of them
is biased estimation technique that used as an alternative to LSE to obtain some reduction in
the variance with some cost in the bias. Hoerl and Kennard (1970) proposed the ridge estimator
(RE) as

Bk = [S+kI,]7X'Y = [I, + kS™]7*B,
Where k > 0. Liu (1993) proposed Liu estimator (LE) as
Ba= (S+D7'(S+dDB,
Where 0 <d <I.
Since X'X is symmetric, there exists a pxp orthogonal matrix P such that P’ X XP = A,4 is a pxp
diagonal matrix where diagonal elements x; ... %, are the eigenvalues of X'X and X1 >x,>
-« >Xp . So, model (1) can be written in the canonical form as :

Y=Za + ¢ 3)
Where Z= XP and a = P’ . Therefore, The LSE and LE are respectively

a= A1Z'Y 4)
And

ag= (A+D71(A+dDa Q)

In order to reduce the cost of the bias in biased estimators with small change in the variance,
Singh et al. (1986) introduced the almost unbiased ridge estimator (AURE) as:

* Corresponding author
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@aure®) = [1— kK*(A+kD™?]a (6)
Also, Akdeniz and Kaciranlar (1995) proposed the almost unbiased generalized Liu estimator
(AULE)
BapLe(d) = [I-(A+D7?(1 - d)?]& (7
In addition to model (1), we suppose that, there are some prior information about f§ in the form
of a set of independent stochastic linear restrictions
r=RB+ €, ®)
Where R is an q x p non zero matrix withrank  (R)=q<p, risanqx 1 known vector which
is interpreted as a random variable with E(r) =Rp and €" is an q x 1 vector of disturbances with
zero mean and variance-covariance matrix 62V, V is known and positive definite .
Also (8) can be transformed into the canonical form Ta = r where T= RP . It is clear that, the
stochastic restrictions in (8) do not hold exactly but will hold at the mean . Further, it is also
assumed that €* is stochastically independent of € . By unifying the sample and prior
information in a common model (see Rao et al. , 2008)

0= @a+ (), ©

Where E(ee*’) = 0 and (:)( €e’) = o’ ((I) 3

model (9) to get the mixed estimator (ME) which is introduced by Theill and
Goldberger(1961). The ME is defined as follows :

aveg = (A+ RVIR)™1(Z'Y+ R'V™Ir). (10
Since we assumed the stochastic restrictions are held, i.e. E(r) — Ta = 0, the mixed estimator
is unbiased .
In case the prior information and sample information are not equally important in model (1) with
stochastic linear restrictions in (8) , Schffrin and Toutenburg (1990) introduced the weighted
mixed estimator (WME) as follows:
a, = (A+ wR'VTIR)™1(Z'Y+ wR'V~1r), (11)
where 0 < w < 1 is a scalar weight.
Chaolin Liu et al.(2013) proposed the weighted mixed almost unbiased ridge estimator as
follows:
Amaure(K) = @aure(K) + A7 R'(V+ RATIR) (r — R @ayre (k)

=(A+R VIR)HGZ'Y+ RV,

where Qpure(k) = [1— kK2(A+kD™2]aand G = 1—Kk?(A+1)72.
In this paper, we introduce a new type of weighted mixed estimator as a generalization of some
other estimators. The proposed estimator and its properties is given in Section 2 . In section 3
the performance of the new estimator compared with other estimators with respect to the mean
squares error matrix as a criteria are given .

), we can use the least squares method for

2. THE NEW ESTIMATOR AND ITS PROPERTIES

In the first, let us give some bases information that can help us to understand the proposed work
in this paper.
Lemma 1 : (See Rao et al. 2008) Let A: pxp, B:pxn, C:nxn and D:nxp. If all the inverses exist,
then

(A+BCD)"1=A"1—-A"1B(C"'+DA™1B)"1DA™?!
Lemma 2 : (See Farebrother 1979 ) Lel A be a p.d. matrix , ¢ be an non zero vector and 8 be
a positive scaler . Then 8A — cc’ is p.d. if and only if c'A™1c < 6

Lemma 3: (See Rao et al. 2008 ) Let f%]- = A;Y, j=1,2 be two linear estimators of B. Suppose
that D = Cov (B;) — Cov(p,)is p.d. then A= MSE(B;) — MSE(B;) is n.n.d. if and
only if by(D + b;bj)™'b, < 1, where b; denotes the bias vector of Ej )

Lemma 4 : (Hu Yang et al., 2009 )

Suppose A is a real symmetric matrix, P is a matrix then A> 0 & VP,PPAP > 0 & each
eigenvalue of A is non negative .

Using lemma 1, the WME estimator can be rewritten as follows :

@, = @+ WATIR'(V+wRATIR)™I(r —Ra). (12)
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Now, if we replace @ with 6,yg(d), we get the new proposed estimator as follows:
BwmauLe(d) = Qaure(d) + WAL R'(V + WRA™ R)™H(r — R @aype(d))

=A+wRVIR)TIJZ'Y + wRV™1r) (13)

Where] =1— (1 —-d)?(A+ D)2

We are calling as the weighted mixed almost unbiased Liu estimator (WMAULE).

Remark: As we mention in the first, the reason for considering the AULE is to reduce the bias

of LE, at the same time there is a gain in the variance. Therefore, the hope these advantages

will inherit to WMAULE .

The WMAULE is general estimator that includes the LSE, the ME and the AULE estimators:

AwmauLe(1) = ay
If R=0, then

AwmauLe(d) = AayLe(d);
And when w=1;

~ M =a
QX WMAULE
The properties of the proposed estimator can be easily computed. Therefore, the expected value,

the variance and the bias of the WMAULE are given as follows:
E(@wmaure(d)) = —(1 — d)?AA+ D 2Aa+ a
Var(@wmaure(d)) = 62 AJAJ + w2R'VTIR)A
Bias(@wmauLe(d)) = —(1 — d)2A(A + D™ %Aa
= Cl
Where A = (A + wR'V™IR)™! | The bias and the variance of an estimator B* is measured
simultaneously by the mean squares error matrix (MSE)
MSE(B*) = Var(B*) + Bias (B*)(Bias(f*))".
For this purpose ,
MSE(@,,) = o%A(A + w?R'VTIR)A'. (14)
MSE(@wmauLe(d)) = 62AJA]" + w2R'VTIR)A' + ¢ c/4(15)

3. SUPERIORITY OF THE NEW ESTIMATORS

Let Bf = A;Y, i=1,2 be any two estimators. We know that
MSE(B]) — MSE(B2) = Var(B1) — Var(B3) + ByB; — B3B;
= 02D + B;B; — B,Bj,
Where D = A;A] — A, A%, If we want to know whether A= MSE(B]) — MSE(B3) is a positive
definite (p.d.) or not , we may confine ourselves to the following fact :

Since B;Bjis a non negative definite (n.n.d) matrix and D is a p.d. This implies that
02D + B;Bj is a p.d. (see Rao et.al.2008). Thus, A reduce to the matrix type BA — cc'.
Therefore, A is p.d. when A is p.d.

Let us consider the difference among the estimators:
A;= MSE(@yg) — MSE(@ymayLe(d)) = 6°D, — c;cy,

A, = MSE(@waure(K)) — MSE(@vaure(d)) = 62D, + bybi — ¢;cf
Where
Dy = A(A + W2R'V-IR)A" — A(JAJ' + w2R'V-IR)A',
D, = AGAG' + W2R'V=IR)A' — A(JA]' + W?R'V-IR)A'.

3.1 Superiority of the mixed almost unbiased Liu estimator
We are searching now for the condition that makes the proposed estimator is better than ME .
For this reason , we need to check when D;is p.d.

D1 can be written as following :
Dy =AM —J]HA’
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(a-d?

Butl—]JJ =1—[I—(A+1)"2(I — dI)?]%and each element of itis 1 — [1 — > +1)2]2 When
_ 2
0<d<1,itisclearthat1 —[1 — %]2 < 1 and that means D1 is p.d. Therefore we have

the following theorem:

Theorem 1
The proposed MAULE is superior to the ME in the MSE sense, namely, A, if and only if
ciD3te; < 62

Let us rewrite D2 as follows:
D, = AA(GG' —J])A’

But ,
G' =] =[1-kK*(A+kD™?]? —
[1—(A+D721 - dD?)? (17)
2
For any element i=1,.....,p, the elements of (17) will be in the form (1 — (x-IiK)Z)Z -
a- ((j +d1))2)2 Therefore the condition that makes D2 p.d. is reduced to the condition that
_ K? _ (a- d) 2
makes (1 S +K)2) - o +1)2) > 0. Let d be fixed for the moments, the condition
_ K? _ (1- Cl) 2

(1 ()\.+K)Z) 1- o +1)2) > 0 will reduce to condition (%j+ k)(1 —d) — k(x;+ 1) >

»i(1=d)
0 and this will satisfy when k < ——— TSk

In this case D, will be p.d. and by using Lemma3 we have the following theorem.
Theorem?2
The MAULE weighted estimator is superior to the mixed almost unbiased ridge in the MSE

sense, namely, A,if and only if c; (D, + byb})™1c; <1 fork < (d(i;;)

Now, let k be fixed for the moments. To avoid the repetition, when 0 <k <1 and d < ol C))

(k+x{) ’

D2 will be p.d. and by using lemma 3 we have the following theorm.

Theorem 3

The MAULE is superior to the weighted mixed almost unbiased ridge estimator in the MSE
»i(1-K)

(ktxp)

As is well known to us , the values of the parameters k,d,o and a are unknown, therefore we
must estimate them as in previous studies (see Hoerl and Kennard (1970a,b) and also Liu
(1993))

sense, namely,A,if and only if c¢; (D, + b;b})71c; < 1 ford < =2—

4. NUMERICAL EXAMPLE

To illustrate the performance of the proposed estimator in the MSE, a numerical example is
given . We consider the dataset on portland cement where it has been widely analyzed in
literature (Hu Yang and Jianwen Xu (2007)) and (Hu Yang et al. (2009) ). By using Lemma 4
we can get 4; , i=1,...,3 is n.n.d if and only if each eigenvalue of A;is non negative.

Consider the following stochastic linear restriction: (see Hu Yang et al.,2009)

r=Rp + e, where e ~ N(0,535). G55 = 5.8455 and R=(1,-1,1,0), where the LSE is
6 = (2.1930,1.1533,0.7585,0.4863)’

By observing Table 1, we note that the performance of the new estimator is better for different
values of k and d compared with ME and this result is consistent with the theoretical results in
theorem 1 and 2 .

The performance of new estimators influenced by the value of parameter k and d and this is
evident in Table 2. Where in the case k is small, the estimator MAULE will be the best
compared with weighted mixed almost unbiased ridge estimator and this preference decreases
when the value of k is increased until to become better than MAULE when k=0.7 for all values
d in this study .
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Table 1 : Estimated eigenvalues of A, and for different values of d.

Table 2: Estimated eiagenvalues of A, for different values

of d and k
k=0.1

d 0.3 0.6 0.9
1 (A,) 35.1098 | 12.5983 2.64x102
o (Ay) 0.0061 0.2705 | 5.51x10-2
3 (4,) 0.2845 0.0023 | 4.91x10-4
x4 (82) 0.8228 0.0922 | 1.87x10-2
k=0.3

d 0.3 0.6 0.9
g (D) 28.2066 5.6952 | -6.90x107?
xz (A,) 0.0048 0.001 | -1.46x107
X3 (43) 0.2349 0.0426 | -1.30x1073
g (42) 0.6771 0.1247 | -4.95x10-2
k=0.7

d 0.3 0.6 0.9
1 (4,) -8.0138 | 22.5114 -3.51x10
o (Ay) -0.0013 | -0.0038 | -6.10x103
3 (4,) -0.0739 | -0.1922 | -2.85x10%
xg (82) -0.2107 | -0.5524 | -8.23x10*!

w=0.05
d 0.3 0.6 0.9
X1 (A7) | 0.854746 | 0.350179 | 0.0000012
X, (A7) | -0.004184 | 0.000862 | 0.0000035
X3 (A1) | 0.000933 | -0.000143 | 0.0000924
X4 (A7) | 0.000165 | 0.000055 | 0.0239074
w=(0.1
d 0.3 0.6 0.9
X1 (A7) | 0.854647 | 0.350176 0.0239074
X, (A7) | -0.002800 | 0.000699 0.0000671
X3 (A4) | 0.000966 | -0.000121 0.0000011
X4 (A7) | 0.000154 | 0.000052 | 0.0000033
w=0.35
d 0.3 0.6 0.9
X1 (A4) | 0.854517 | 0.350173 0.0239074
X, (A7) | -0.001077 | 0.000406 0.0000302
X3 (A4) | 0.000918 | -0.000074 0.0000008
X4 (A7) | 0.000108 | 0.000037 0.0000027
w=0.75
d 0.3 0.6 0.9
X1 (Ay) 0.854491 0.350172 | 0.0239074
X, (Ay) -0.000697 0.000296 | 0.0000199
X3 (Aq) 0.000782 -0.000052 | 0.0000004
xg (Ay) 0.000061 0.000023 | 0.0000023
w=0.95
d 0.3 0.6 0.9
X1 (A1) -0.000643 0.350172 | 0.0239074
X, (A1) 0.000047 0.000274 | 0.0000181
X3 (A1) 0.000740 -0.000047 | 0.0000003
xg (A1) 0.854488 0.000018 | 0.0000023
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ABSTRACT

We establish the concept of bipolar complex neutrosophic soft set (BCNSS) by extending the
concept of bipolar neutrosophic soft set (BNSS) from real space to the complex space. BCNSS
is a hybrid structure of bipolar complex neutrosophic set (BCNS) and soft set, thus making it
highly suitable for use in decision-making problems that involve positive and negative
indeterminate data where the extra information provided by the phase terms of the complex
numbers play a key role in determining the final decision. Based on this new concept we define
the basic theoretical operations such as complement, subset, union and intersection operations.
The basic properties are also verified.

Keywords: bipolar complex neutrosophic set; bipolar neutrosophic soft set ;complex
neutrosophic set; neutrosophic soft set

1. INTRODUCTION

A soft set is a set-valued map defined byMolodtsov [15], to approximately describe objects
usingseveral parameters. Neutrosophy [17] is a branch of philosophy which studies the origin,
nature and scope of neutralities, as well as their interactions with different ideational spectra.
Neutrosophic set [18] is a part of neutrosophy, handles uncertainty, indeterminacy and
inconsistency. Both complex neutrosophic set [1] and neutrosophic soft set [ 14] are improved
and generalized models of the neutrosophic set but in different spaces. Complex neutrosophic
set handles the neutrosophic data which has the periodic manner, while neutrosophic soft set
provides a parameterization tool to hanle the neutrosophic data.Subsequently, these uncertainty
sets have been actively applied in various decision making problems to handle all types of
uncertainty [3-9].

A wide variety of human decision making is based on double-sided or bipolar judgmental
thinking on a positive side and a negative side. A great deal of research have been
conducted to integrate the idea of bipolarity in decision making techniques by virtue of
the uncertainty sets like fuzzy, intuitionistic fuzzy, complex fuzzy , neutrosophic and
complex neutrosophic sets [2,10-13, 16]. Motivated by these results and as per our
knowledge there is no work available on bipolar complex neutrosophicsoft set and its
application.Acordingly, based on soft set theory, we introduced bipolar complex
neutrosophic soft set and its operations. The results of this paper can be applied in
different decision-making problems.

2. PRELIMINARIES

This section provides a brief overview of some concepts on neutrosophic sets and
complex neutrosophic sets.

We begin by defining the cocepts of neutrosophic set, neutrosophic soft set and bipolar
neutrosophic soft set.

Definition 2.1. Let U be a universe of discourse. A neutrosophic set N in U is defined as
N ={<u; Ty(uw), Iy(w), Fy(w) >:u € U}, where Ty(u), Iy(w)and Fy(u) are the truth,

* Corresponding author
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the indeterminacy and the falsity membership functions, such thaT,I,F:U —»]~0,1*[t and
0" <T+ 1+ F< 3%

Definition 2.2. Let U be a universe and E b set of parameters set. A pair (N, E) is called a
neutrosophic soft set over U, where N is a mapping given by N: E — p(N).
Where p(N) denotes the power neutrosophic set of U.

Definition 2.3. Let Ube a universe and E be a set of parameters. A bipolar neutrosophic soft
set B in Uis defined as

B={<e{TT(w),I*(w),F*(w), T~ (w),I"(w),F~(u)} >:e €E, u € U}, where
T*,I",F*:U - [0,1] and T=,17,F~:U - [-1,0]. The positive membership
degreeT*, I, Ftdenotes the truth membership, indeterminate membership and false
membership of an element corresponding to a bipolar neutrosophicsoft set Band the negative
membership degreeT —,1~, F~ denotes the truth membership,indeterminate membership and
false membership of an element u € U to some implicit counter-property corresponding to a
bipolar neutrosophic soft set B.

Definition 2.4. Let X be the universe. A complex neutrosophic set S in X is defined as S =
{< x; Ts(x), I5(x), F;(x) >:x € X}, where Ty(x), I;(x) andF;(x) are complex-valued truth,
indeterminate and false membership functions and are of the form T,(x) = P,(x).e/Fs™),
L(x) = qs(x).e/Vs™  and  F,(x) = r;(x).e/“s™® By definition, P;(x),qs(x),7s(x)and
Us(x),vs(x), ws(x) are, respectively, real valued and P;(x), gs(x),5(x) € [0, 1], such that
0- < P.(x)+ q.(x) +7.(x) < 3*.

Definition 2.5.A bipolar complex neutrosophic set C in U is defined as:
C={<u pre’, gte",rtel®”, pmelt”, g=el, r=el®” >:u € U}, where
pt,qt,r*:U > [0,1]andp~,q~,r":U - [—1,0]. A bipolar complex neutrosophic number
can be represented as follows.

C =< p+eiu+’ q+eiv+’ r+eiw+’ p—eiu_’ q—eiv_’ roel®” >,

3.BIPOLAR COMPLEX NEUTROSOPHIC SOFT SET

Definition 3.1. Let X be a universe,A be a set of parameters. A bipolar complex
neutrosophic soft set (BCNSS) (B, 4) is defined as:

(Br A) = {< a, {T;(a)(x)l I;(a)(x): F;(a)(x)l TB_(a)(x)' IB_(a) (x)' FB_(a)(x) } >
o+
a€Ad, €X} where Va€AVx€EXTyy(X) = Pjy (x)e™ @™, Iy =

Tp (e Fiy(®) = 15(x)e Toy(®) =

P);(a) (x)ezni#B(a)(x)’ Il;(a) (X) = ql;(a) (x)ezmvB(a)(x)' and FB_(a) (X) = rB_(a) (x)QZTL'in(a)(x),
such that :

Pt gt rtut, v, wt: X > [0,1]and P7,q",r",u",v_,w":X - [-1,0] . The positive
membership degrees T, I*, FTdenotes, respectively the complex valued truth, indeterminacy,
and falsity membership degrees of an element x € X to the property corresponding to a BCNSS
(B, A), and the negative membership degrees T~, [, F~ are to denote the complex valued truth,
indeterminacy, and falsity membership degrees of an element x € X to some implicit counter-
property corresponding to a BCNSS (B, 4).

Zm'vg(a) (x)’ 2niw§(a) (x),

The following example illustrates the definition of the BCNSS.
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Example 3.2.Let X = {xq,x,} be a universe and A = {a,, a,} be a set of parameters . Then
the BCNSS (B, A) is defined as below:

(B,A)={< ay,

X1
<0.2 e2mi(0.5) , 0.1 ezni(o.4)‘ 0.3 ezni(o.s)‘_olz e2mi(—0.5) — 0.8 ezm‘(—o.7)‘ —-01 ezni(—o.2)>}'

X2
{< 0.9 eZm'(O.7) , 0.2 eZni(O.s)’ 0.4 eZm‘(O.l)' —0.3 eZni(—0.6) ,— 0.1 eZni(—O.S)‘ —0.4 eZm'(—O.S) >} >

X1
< az, {< 0.5 eZm'(O.é) , 0.4 eZni(O.S)’ 0.1 eZni(O.s)' —-0.2 eZni(—0.7) ,— 0.3 eZni(—OA)‘ —0.2 eZm'(—O.6) >} ’
X2

< 0.8 eZm'(OA) , 0.2 eZni(0.4), 0.7 eZni(0.9), —0.9 eZni(—0.4) ,— 0.8 eZm‘(—O.z)' —-0.7 ezm(—o.s) >

E

Now we put forward the definition of the empty BCNSS and the definition of the absolute
BCNSS.

Definition 3.3.Let (B, A) be a BCNSS over X. Then (B, A) is said to be empty BCNSS
denoted by By, if T4y (x) = 0,154 (x) = 1, F5qy(x) = 1 and Tg(4)(x) = 0,155 (x) =
=1, Fga (x) = —1,Va € A, Vx € Xand defined as :

(By,4) ={<a,{0,1,1,0,—-1,-1} >:a € A,x € X}.

Definition 3.4. Let (B, A) be a BCNSS over X. Then (B, A) is said to be absolute BCNSS
denoted by By, if Tg (%) = 1,155 (x) = 0,F((x) = 0 and Tp,y(x) = =1, 5 (%) =
0, FB_(a)(x) = 0,Va € A,Vx € Xand defined as :

(Bx,A) ={<a,{1,0,0,—1,0,0} >:a € 4,x € X}.

In the following , we introduce the concept of the complement of the BCNSS.

Definition 3.5. Let X be a universe of discourse and (B, A) be a BCNSS on X.
The complement of (B, A) is denoted by (B, A)¢ = (B¢, A) and is defined as:

(B, A)° = {< a,{Tge(qy (), Ie(qy (%), Fge(qy (), Tgey (), Igeqy (), Fae(qy (x) 3 >:
a €A, x € X}, where

Tpe()(*) = Pgey(¥)e = T (e
Igey(0) = Qece ()2 5@ ™ = ( 1—qp (x)) 21~V (),
Fie () = i@ 5 @™ = pr (et ®,
Tie(y () = Pe(ay()e”™ 570" = 1y (e
Ige@y(x) = dge(q) (e ™rr@™ = (—1 — q,;(a)(x)) 21V (X))

Fre(ay®) = ey (e 5@ = pro, (e Hew®,

Zniugc(a) (%) Zniwg(a) (x)'

2T wp gy (%)

Example 3.6.Consider Example 3.2. By Definition 3.5, we obtain the complement of the
BCNSS (B, A) given by

(Br A)C: {< al:

X1
<0.3 eZiTi(O.B) , 0.9 eZT[i(O.ﬁ)' 0.2 627'[1'(0.5),_0_1 627'[['(—0.2) — 0.2 eZT[l’(—O.?’)' -0.2 327'[1'(—0.5)>}’

X2
{< 0.4 eZn:i(O.l) , 0.8 leri(O.S), 0.9 621'[1'(0.7), —0.4 eZm’(—O.S) ,— 0.9 eZm’(—O.S)’ —0.3 leri(—O.G) >}
>,

X1
< @z {< 0.1 e2mi(05) | (.6 ¢2mi(02) (5 2mi(0.6) _(.2 g2mi(-0.6) _ (1.7 g2m(=06) _ (1.2 g2mi(=0.7) >}'
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X2
{< 0.7 e27ri(0.9) , 0.8 leri(O.G)’ 0.8 leri(OA)’ —0.7 leri(—O.S) ,— 0.2 eZm’(—O.S)' —0.9 eZTri(—OA) >}
>}

Proposition 3.7. If (B, A)is a BCNSS over the universe X. Then((B, A))¢ = (B, A).

Proof. The proof is straitforward from Definition 3.5.00

Now, we establish the definitions of the subset, union and intersectionof two BCNSSs.

Definition3.8. For two BCNSSs (B, A) and (B’, A") over X . A BCNSS (B, A) is contained
in the BCNSS (B’, A") , denoted as (B, A)E(B’, A")if and only if:
(1) ACA',and (2) Va € 4, Vx € X, Pygy(x) < Ppiy (%), qrgy(x) =
570 O Ty () = 11y (XD, iy () < pigr 0y (O, Vi (ay () = Vo9 (),

(x);(a)(X) = (J);I(a)(X) and PB_(a)(x) = PB_’(a)(x)l qE(a)(x) < q;’(a)(x)» TB_(a)(x) <
Tt (@) (s U @) (%) = Hgr 0y (%), V(ay (X) S Vi) (%), W0y () S wpr 3 (X).

Definition 3.9.LexX be a universe. The union (intersection) of two BCNSSs (B, A) and (B’,
Adenoted as (B, A) LI(M)(B', A)isa BCNSS (C,D), where D = A U A’ and Ve € D,
Vx € X,

Pio e HaoWife e A—A'
o+
TC(e) = P;r(e)(x)ezm#B’(f)(x)ife e A-A

.+ +
(Pio @V (A) P (@)™ W20 YOy ip e e 4 4

Qo @)e?™EOWife e A— A
o+
i = o™ ePife € 4 -4

it +
(230 @ A W) g @) @@ 0 ife e an a

.
Fie = ﬁ;'(e)(x)ezmwf"@(x)ife €A -A

.+ +
(10 @) A (V) 1 () . @O e e g

Pro()e?™ee®ife e 4 — A’
Py (e ™5 @@ ife € 4’ —4

(Proy @) A (V) P (@) . *™ 2@ ®Dif e € A a7

Tee) =

{ o (e ko Wife e A—a
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A5 ()™ B0Mife € A— A’
Ieee) = 3 QEI(E)(x)ezmv;’(@(x)ife EA-A
(450 V (M) 51 ()™ B0 Dif e e an A

Toe e @reWife e A— A
Fee) = o rl;’(e)(x)ezniw;’(e)(x)ife EA-A

(rr0 GV (W) 1 (0) B0 D0 i e € a0 4

Proposition 3.10. The following properties are hold for the BCNSSs (B,A) ,(B', A)and
(BII’ Al’).

(1)(Bg, A) = (Bx, A4),
(2)(Bx, A)* =(Bp, A),
(3) (B!A) u (B(Z)iA) = (B;A)/
(4)(B'A) u (BXlA) = (Bx,A),
(5)(B,A) N (Byg,A) = (Bg, A),
(6)(B,A) N (Bx,A) = (B, 4),
(7)(B,A)u(B’, A) = (B, A)u (B,A),
(8)(B,A)n (B, A') = (B, A)n(B,A),
(9B,Au (B, A) u (B”, A"))=((B,Au (B, A)) u (B", A"),
(10)B,A)n ((B', A) n (B", A")) = ((B,A)n (B, A)) n (B", A"),
(11)(B,A)u ((B', A") n (B", A")) = ((B,A) u (B, A") n((B,A)u(B", A")),
(12)(B,A)n ((B', A) u (B", A")) = ((B,A)n (B', A)) u((B,A)n(B", AM),
(13)((B,A) u ((B', A =(BA° n (B, A)°,
(14) ((B,A) n((B', A')¢ = (B,A)° u (B', A")".

8. CONCLUSION

We established the concept of bipolar complex neutrosophic soft set (BCNSS) as a
generalization of both bipolar complex neutrosophic set and bipolar neutrosophic soft set.
Some essential operations such as complement, subset, union and intersection with their
properties are defined and verified. BCNSS seems to be a promising new concept, paving the
way toward numerous possibilities for future research. We intend to investigate this concept
further to develop some real applications.
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ABSTRACT

This work aims to develop a reliable approximation tool to solve the nonlinear fractional
integro-differential equations that include a Fredholm operator under Caputo fractional concept.
The proposed technique is mainly based on the use of residual power series method combining
the generalized Taylor's series and residual error function. This technique can be applied directly
to the solutions of nonlinear phenomena without the need for linearity or set any limitations on
the problem’s nature or the number of grid points. To verify the accuracy and applicability of
this technique, numerical example is performed. The results are carried out using the
Mathematica software package, which indicate that the method is straightforward, and
convenient for approximate rough solutions for nonlinear fractional models arising in various
fields of applied science.

Keywords: Caputo fractional derivative; residual power series method; analytical solution;
Fredholm integro-differential equations.

1. INTRODUCTION

The fractional differentiation and integration theory is indeed a generalization of ordinary
calculus theory that deals with differentiation and integration to an arbitrary order, which is
utilized to describe various real-world phenomena arising in natural sciences, applied
mathematics, and engineering fields [1-3]. Many mathematical forms of real-world issues
contain nonlinear fractional integro-differential equations (FIDEs). Since most fractional
differential and integro-differential equations cannot be solved analytically, thus it is necessary
to find an accurate numerical and analytical methods to deal with the complexity of fractional
operators involving such equations. Anyhow, in recent times, many experts have devoted their
interest in finding solutions of the fractional integro-differential equations utilizing different
analytic-numeric methods. For instance, Adomian decomposition method, variational iteration
method,chebyshev wavelet, Legendre ploynomail method, multistep approach, and
reproducing kernel method [4-14].

The basic goal of the present work is to introduce a recent analytic-numeric method based
on the use of residual power series technique for obtaining the numerical approximate solution
for a class of nonlinear fractional Fredholm integro-differential equations in the form

D o(t) + f h(t,s)(p(s)"ds = f(t),0< B < 1,r>2, (1)
0

with the initial condition

»(0) =@y ER, ()
where Df + denotes the Caputo fractional derivative, f(t) and h(t,s) are smooth functions.
Here, ¢(t) is unknown analytic function to be determined.

" Corresponding author: Rania Saadeh
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The residual power series (RPS) method is a recent analytic-numeric treatment method
based on power series expansion was proposed by Abu Arqub in [15] to provide analytical
series solutions of first and second-order fuzzy differential equations. The method is easy and
applicable to find the series solutions for several types of the non-linear differential equation
and integrodifferential equations of fractional order without being linearized, discretized, or
exposed to perturbation. The RPS method has been successfully applied to solve linear and
non-linear ordinary, partial and fuzzy differential equations for more details, see [16-26].

The rest of the current paper is as follow: In next section, we introduce some essential
preliminaries related to fractional calculus and fractional power series representations. In
Section 3, we illustrate the solution methodology by using the RPS technique. In Section 4,
illustrative problems are given to demonstrate the simplicity, accuracy, and performance of the
present method. Finally, we give concluding remark in Section 5.

2. PRELIMINARIES

In this section, we recall some definitions and basic results concerning fractional calculus and
fractional power series representations [27-34].

Definition 2.1: The Riemann-Liouville fractional integral operator of order S, over the interval
[a, b] for a function ¢ € Lq[a, b] is defined by

1t 9(@)
Jf+€0(t) = {TB) a(t-1)t-B dr,0<t<t,p >0,

Definition 2.2: For § > 0,a,t, 8 € R. Then the following fractional derivative of order 8

A0
(n—p)J, (t—)fn+t
n—1<f <nforn €N, is referred to the Caputo fractional differential operator of order 3.
In case § = n, then Df+<p(t) = %(p(t).

Df+<p(t) =7 dr,

The following are some interesting properties of the operator D f +
A

t—-a)? P n-1<p<ng>n—-1,neNqgeR

e For any constant ¢ € R, then D
r(q+1)
. Df+ (t—a)l = {F(q+1—3)

c=0,

0, otherwise.
o DL 3Po(®) =00,

&) (qt
o JEDE(®) = o(t) - Bpzb

k!

(t — a)k.

Definition 2.3: A fractional power series (FPS) representation at t = a has the following form

0]
Z cm(t—a)™ =cy+ ¢y (t —a)f + ¢y (t — a)?P + -+,
m=0
where 0 <n—1<f <nandt > a, and ¢,,’s are the coefficients of the series.
Theorem 2.1:Suppose that ¢(t) has the following FPS representation att = a

[ee]

o = ) cnlt =™,

m=0
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where n—1<f<na<t<a+R, o) €C[aa+R) and D;riﬁq)(t) € C(a,a +R) for
D p(a)
r(mp+1)

m = 0,1,2, ..., then the coefficients c,, will be in the form c,, = such that Dgﬁ,ﬁ = Df; .

D5+ . ...-D5+ (m-times).

3. CONSTRUCTION SOLUTION BY RPS ALGORITHM

The purpose of this section is to construct FPS solution for non-linear fractional Fredholm
integro-differential equations (1) and (2) by substitute its FPS expansion among its truncated
residual function. The RPS algorithm proposed the solution of Egs. (1) and (2) about a = 0 has
the following FPS expansion:

[ee)

tmB
() = z Cm T + 1) 3)

m=0
For obtaining the approximate values of Eq. (3), consider the following k®-FPS

approximate solution
k

tmB
o (t) = Z Cm Tp + 1) 4)

m=0
Clearly, if = 0, 9(0) = @,. So, the expansion (4) can be written as

k
tmB
Or(t) = @o + Z Cm T+ 1) (%)

Define the so-called the residual funftion for Egs. (1) and (2) as follows:
Res(t) = Do (t) + f h(t,s)(@(s))" ds — f(©), (6)
and the following k"-residual function i .
Resy(®) = Dlei® + [ W) (@) ds = £(0), ™)
As in [21-25], some useful properties of resoidual function

° Ilim Resy(t) = Res(t) = 0, foreach t € (0,1).
o D Res(0) = D)’ Resy (0) = 0 for each m = 0,1,2, ..., k.

For obtaining the coefficients c,,, m = 0,1,2, ..., k, solve the solution of the following
relation:

D! P Res, (0) =0, k=123,..

(®)

4.NUMERICAL EXAMPLES

This section aims to test two nonlinear FFIDEs in order to demonstrate the efficiency, accuracy,
and applicability of the present novel approach. Here, all necessary calculations and analyses
are done using Mathematica 11.

Example 4.1: Consider the following nonlinear fractional Fredholm integro-differential
equation
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1

1
Df+<p(t) + f st3p(s)3ds = 6(2e3 +Dt5+ef,0<p <1,

with the initial condition

0

®(0) = 1.

Here, the exact solution atf = 1 is given by @(t) = et.
Using the RPS algorithm, The k-th residual function Resy (t) is given by

1

1
Res;(t) = D§+q)(t) + j st®p(s)3ds = 6(263 +1)t° + ¢,

where @y, (t) has the form

Consequently,

Res(t) = Di+ (1 +

k
t
m=1

)

k

0

tmp
C —
"r(mB+1)

1
- (5 (28 +1)e° + et).

The absolute errors are listed in Table 1. The results obtained by the RPS method show that
the exact solutions are in good agreement with approximate solutions at § = 1, n = 6 and step
size 0.2. While Table 2 show approximate solutions at different values of S such that § €
{1,0.9,0.8,0.7} with step size 0.16. From the table, one can be found that the RPS method
provides us with an accurate approximate solution, which is in good agreement with the exact
solutions for all values of t in [0,1].

mpB

B+1)

1

+fst5

0

(-2

s™mP

“mTmp + 1)

3

) a

Table 1: Absolute error for Example 4.1 at 3 = 1.

)

(10)

(an

t Exact Sol. Approximate Sol. Absolute Error

0.2 1.221402758160169 1.2214027555555556 2.60461 x 107°

0.4 1.491824697641270 1.4918243555555555 3.42085 x 1077

0.6 1.822118800390509 1.8221128000000000 6.00039 x 107

0.8 2.225540928492468 2.2254947555555558 4.61729 x 1075

Table 2: Numerical results for Example 4.1 for different values of £.
¢ 6th RPS solution
B=1 B=09 B=0.8 B=0.7
0.16 11735108704 1.2236588706 1.2896293585 1.3781327965
0.32 1.3771276933 1.4620068483 1.5701199217 1.7112052001
0.48 1.6160731635 1.7354009578 1.8854925107 2.0791905574
0.64 1.8964714019 2.0527277406 2.2480109650 24982975959
0.80 2.2254947555 24227191207 2.6681456160 2.9806767189
0.96 2.6115273760 2.8549680620 3.1566853797 3.5379276118
CONCLUDING REMARKS

The present paper aims to solve a class of nonlinear fractional Fredholm integro-differential
equations of order 8: 0 < § < 1, based on the use of RPS algorithm. The solution methodology

depends on the constructing of the residual function and applying the generalized Taylor
formula under the Caputo fractional derivative. The proposed algorithm provides the solutions
in the form of rapidly convergent series with no need linearization, limitation on the problem’s

nature, sort of classification or perturbation. Numerical results are performed by Mathematica
10. The results demonstrate the accuracy, efficiency and the capability of the present method.
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Therefore, the RPS algorithm is reliable, effective, simple, straightforward tool for handling a
wide range of nonlinear fractional integro-differential equations.
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ABSTRACT

Different kinds of estimators have been proposed as an alternative to the ordinary least squares for
estimating the coefficients of the multiple linear regression model in the presence of multicollinearity.
We estimated the parameters of this linear model by two methods: the least squares and the latent roots
method. A comparison between these two methods is given through the application of the economic
growth data of the UAE to study the effect of the population size, exchange rate, total exports and the
total imports on the economic growth. It is shownthat all the explanatory variables using the latent roots
method have an effect on the economic growth and this effect is significant, whereas these variables are
not significant using the least squares method.

Keywords: Regression; Multicollinearity; Least Squares; Correlation Matrix; Eigen Values; Eigen
Vectors ;Latent Roots

1. MULTIPLE LINEAR REGRESSIONMODEL

The study of any particular phenomenon requires the identification of the factors
influencing this phenomenon and the formulation of the relationship between these factors in
the form of a model that expresses them. This model may be represented by one or several
equations. In terms of a single equation, it may be simple or may be multiple. Common forms
of use include a linear one that takes a mathematical form in writing and including more than
one explanatory variable. This model will be used in this research and the general formula for
this model is (Yan & Gang Su, 2009):
y=XB+u . (1)
Where:
y: is (nx1) vector of observations of the response variable.
X: is (nxk); k=p+1,matrix of observations of the explanatory variables whose first column
contains the values of one.
B:1s (kx1) vector of the parameters to be estimated.

u:is (nx1) vector of random errors.

In order to estimate the parameters of the model and to ensure that the estimations have
desirable properties, there are certain hypotheses that must be met (Chatterjee& Price, 2000).

2. LEAST SQUARES METHOD
This method is one of the most widely used methods for estimating the parameters of
the linear regression model. The least squares estimate of the regression parameters in this
method are(Kutner et al., 2005 ):

BoLs = X'X)? (X'X) e (2)
Here are the properties of this method(Draper & Smith, 1981)(Fisher, 1981&Mason) and
(Gunst& Mason, 1980):

1. Linearity :the estimated parameters in this method are linear in terms of the response
variables :

Bous = (X0 (X'y) = [(XX)Xly
2. Unbiased :That is, the expected value of the estimated parameters is equal to its real
value:
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E [EOLS] =B

3. Variance: The variance of the estimated parameters is minimum ,where

var (Bows) = (X'X)"*0? e (®
andg? = L1 PousX'y
n—p—-1

3. THE CONCEPT OF THE MULTICOLLINEARITY IN THE REGRESSION
MODEL

Multicollinearity is one of the problems that occur in many cases due to the existence of a
relationship between the explanatory variables. The existence of the complete multicollinearity
between the variables leads to making the matrix (X'X)not of full rank, ie, its determinant is
zero. Thus, it is difficult to find the inverse of this matrix, Which means that the regression
parameters can not be estimated using the Least Squares method. The existence of an
incomplete but powerful multicollinearity leads to the amplification of the variance and thus
the acquisition of inaccurate capabilities(Dounald, 1987) and (Chatterjee et al., 2000).

4. DETECTING MULTICOLLINEARITY IN THE REGRESSION MODEL
Multicollinearitycan be detected by many methods(Draper & Smith, 1981),(Fisher,

1981&Mason) and (Gunst& Mason, 1980):

1. The correlation coefficients matrix:

2. Determinant of matrix:

3. Latent values for (X'X) matrix:

5. SOLUTION OF MULTICOLLINEARITY
There are several methods proposed to minimize the effect of multicollinearity, Such as

(Fisher & Mason, 1981):

1. Delete the explanatory variables that are associated with other variables in order to get rid
of the effects of this link and this deletion process according to certain criteria proposed to
delete the specific variables.

2. Add new data to the original data.

3. Use biased estimation methods.

6. LATENT ROOTS METHOD

This method was proposed in 1973 by Hawkins, the idea of this method is to find the
latent roots of the correlation matrix and then to exclude the roots that are not important in the
prediction process. The following is a detailed explanation of this method (Mason,
1986):Correlation matrix is obtained by multiplying the transpose matrix (A) and the same
matrix ie:

R=A'A

Where:

A: Is the standardized information matrix which contains the standardized values of the

response variable and the standardized values of the explanatory variables:

R: the Correlation matrix between all variable, it is defined as follows:
- v TypT
1 1y Ty2 Tys yp
rny 1 1 rizo Tip
R — rzy r21 1 r23 s I‘2p
fgy T31 T2 1 .. 13
[ Tpy Tp1 Tpz TIp3 e 1

Latent roots:latent values and latent vectors, are obtained according to the following formula:
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The estimation of the regression parameters vector by Least Squares Method that based on the
latent roots, are as follows:
p YoiYj
~ Zj:O 7\]'
BoLs = ————— e (4)
— Zp M
j=0 A
To find the Latent Root Estimators, all the values and vectors that are not significant in the

prediction are deleted from the equation (4), the roots that meet the following conditions are
deleted:

A <1 and |yoj| <05 for j=012,..,p
The remaining latent roots are less than or equal to p, denoted by q, and estimated by the Latent
Roots Method are as follows:

q YojYj
~ z:] =0 Y
BlrR=—""7" ...(5)
— Zq m

j=0 }\]‘

LatentRoot estimators have the following properties:
1. Bias: The Latent Root estimator is biased and its bias is:

YO]Y]
~ Z] =q+1 7\
Bais (Brr) = ———— ea(6)
Zl =q+1 7\

2. The variance: The variance of the Least Squares estimators in terms of latent roots is:

p , (Zp YO]Y]) (Zp VO]Y])
~ YjY; j=0 2 j=0 2
Var(BOLs) = OdLs Z_
- A

. (7)
Y
=0 Z]p 0 ;’
The variance of the Latent Root estimators is :
q q YojYj q YojYj
[ ERSE) ()

Var (BLR) = OLR 2_— (8)

- =0 }\j Zq M

The variance of the ith estirnator 1S:
q YOJYu)

Yl] ] =0 2
Var BlLR = ofg Z
q Yll

=0 ¥
3. Mean Squares Error: Since the Latent Roots estimator is biased, this makes the mean
squares error as follows:

q Y01Y1] Z YojYij 2
y1] ] =0 ?\ j=q+1 A
MSE BLR —O'LR + E———
yd VOJ = Zp YOJ
Lj=o A = q+1 3

Basilevsky in 1994 suggested a approximation of the mean squares error for the Latent Roots
estimator as:
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q Y0]Y1])
] =0 . N2
MSE BLR = GLRZ 'z b . + (YBBLR) - (9)
7 yO] -
1 =0
7. APPLICATION PART
A comparisonbetween the least squares and the latent roots regression methods is given
through the application of the economic growth data of the UAE (Alsaffar, 2016).The data
represent the Economic growth (Y) and four explanatory variables for the period (1999-2008).
The explanatory variables are: (X;) Population size;(X:) Exchange rate; (X3) Total export; (X4)
Total imports.
7.1The correlation matrix is given in table (1) below:

Table (1): The simple correlation coefficient between the explanatory variables and the
independent variable

Y X1 X X3 ), @
Y 1 0.9461 0.9942 0.99 0.9847
X1 0.9461 1 0.9504 0.9269 0.9057
X, 0.9942 0.9504 1 0.9954 0.9919
X3 0.99 0.9269 0.9954 1 0.9935
X4 0.9847 0.9057 0.9919 0.9935 1

7.2The Latent Roots and Latent Vectors of the Correlation Matrix were found using a program
written in the MATLAB language
7.3Table 2 gives the values of the latent roots and vectors for this data set .It also checks the
multicollinearity between the variables according to the following conditions:
A <1 and |yg| <05 for =012 ..,p
Table( 2): Test results

i A Yoi Conditions
0 0.0003 -0.053 Two holds
1 0.0052 -0.0518 Two holds
2 0.0097 0.8871 One holds
3 0.1122 0.0636 Two holds
4 4.8726 0.4512 One holds

The above table shows that three values satisfy the two conditions. This means that
there is a multicollinearity between these variables, so the Latent Root estimators and its
variances will depend only on the remaining two values i.e q = 2.
7.4Table 3 gives the values and the variances of the estimated regression parameters using
Ordinary Least Squares equation (2).

Table (3): Estimators, variances and the t- test values of the regression coefficients in the
Least Squares

i PioLs VBiors) tBigrs)

1 -0.2037 0.3087 -0.3667N-
2 1.7528 4.4836 0.8278N-S)

3 -0.0104 0.4892 -0.0148 NS
4 -0.5592 1.4585 -0.463N-9
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We see from the above table that all variables are not significant .Table 4 gives the values and
the variances Using Latent Roots method equation (5).

Latent Root
i BiLR V(BiLR) t(BiLR)
1 0.196 0.0001386 16.6482
2 0.2168 0.000154 17.4742
3 0.2369 0.0001578 18.8614
4 0.3577 0.0001885 26.0558

We see from the above table that all variables are significant.
7.5 MSE is estimated for the two methods according to equations (4) and (9) respectively is as
in table 5:
Table (5): MSE for Ordinary Least Squares and the Latent Roots before deletion

Table (4): Estimators, variances and the t- test values of the regression coefficients in the

The method o Part1 Part2 MSE RZ2
Least Squares 0.0471 6.7401 0 6.7401 98.89%
Latent Roots 0.0497 0.0006388 0.0028 0.0034 98.76%

Notice that the MSE for Latent Roots method is lower than that for Least Squares method as
well as the value of R2.The MSE and the coefficient of determination values for both methods
after ignoring the non-significant variables is given as:

Table (6): MSE for the Least Squares and Latent Roots after deletion

The method o | MSE | R?
Least Squares There are not significant parameter
Latent Roots 0.0497 | 0.0034 | 98.76%

From the above table we conclude that the estimated model using the Latent Roots method
is better than the estimated model in the Least Squares method taking in consideration the
number of significant variables for both methods .

7.6 After deleting the variables that are not important in the prediction process, the estimated
regression equation in the Latent Roots method is:

97 = 0.196 x; + 0.2168 x5 + 0.2369x% + 0.3577 X, .
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ABSTRACT

A class of complex-valued harmonic univalent functions defined by convolution differential
operator is introduced. Coefficient bounds, distortion theorem, and other properties of this class
are obtained.
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1. INTRODUCTION

In any complex domain G a continuous function f = u + iv is said to be harmonic in G if both
u and v are real harmonic in G. In a simply connected domain D < G a harmonic complex-
valued function might be expressed in term of analytic functions, hand g; as f = h+ g. We
call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for
f to be locally univalent and sense preserving in D is that |h'(z)| = |g'(2)| in D (see[4]).
Denote by H the family of functions f = h + g, that are harmonic univalent and sense
preserving in the unit disc U = {z : |z| < 1} for which f (0) = fz(0) —1 = 0. Thus for
f = h+ g in H we may express the analytic functions h and g as
h(z) = z+ Ypo,apz¥andg(z) = ¥o bez®  0<b < 1.

Note that the family of harmonic univalent functions H, reduces to the class of analytic
functions A, which can be written in the form

f(z)=z+ ayz®

if the co-analytic part of f = h + g is identically zero thatis g = 0.

In the negative counter part, let T be donate the subclass of H consisting of all functions
f = h+ gwheref and g are given by

h(@) = 2 — S, laglzkandg (2) = — T, Ibilz® 0<b < 1.
See [16].

In [14] Ruscheweyh defined the differential operator
R*:A—- A
wherea € N and
R°f(2) = f(2)
R'f(2) = zf'(2)

2 — 1 l 2 ¢
R*f(2) = 2f'(2) + 52 (2)

(a + DR*1f(2) = a.R"‘f(Z) + Z(R“f(z))’.
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If f (2) is an analytic function of the form(z) = z + Yj, a;z* , then
o)

Rf(z2)=z+ ) C(a,k)azz*
; ‘

where c(a, k) = (k+g_1).
In [15] Salagean defined the following differential operator
SMA- A
wheren € N and
S°f(2) = f(2)
S'f(2) = zf'(2)

S f(2) = 2(S"H () .

If f (2) is an analytic function of the form (z) = z + Yo, a;z" , then

S"f(z)=z+ Z k™a,z".
k=2

Later Al-Oboudi [1] introduced a generalisation of Salagean operator which defined as follows:
DA - A
wheren € N; and
D°f(z) = f(2)
D'f(z) = A+ 1)f(2) + Azf'(2) = Df (2)

DMf(2) = DA(D"f(2)) .

If f (2) is an analytic function of the form (z) = z + Y, a,z* , then
o0}

D'f(z) =z+ Y [1+A(k — D)]"a,z".
RZZ .

In [5] Darus and Al-Shagsi introduced the differential operator
Ra,/lnl A-A
wheren € N and
Ry i’f(2) = f(2)
Ry f(2) = zf'® + 22" (2) = R*f (2)

Raa"f(2) = R* (Rap" ' f(2)) -

If f (2) is an analytic function of the form (z) = z + Y=, a,z" , then
(o]

Ry, f(2)=2z+ Z [1+ Ak — D]*C(a, k)a,z".
k=2

In [10] Lupas considered the differential operator SR™which is the convolution of R%*and
S™ More precisely,

SR" f(z) = R%f(2) x $"f(z)
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= (z + Z C(a, k)akzk) x (z + Z k"akzk>
k=2 . k=2
=z+ Z C(a, k)k™a?,z".
k=2

In [2] Andrei considered the differential operator DR™which is the convolution of
D™and R“®. More precisely,

. DR" f(z) = Raf(ZZO* D"f(2)
=lz+ ) C(a,k)a zk) * (z + ) [1+ Ak - D] zk>

=z+ ) C(ak)[1+ Ak — D]"azx.

To this end, the platform is ready to construct new convoluted differential operator.
Let usconsider the differential operators D™and R, ;™. Then, the convoluted operator of both
of them is

D"f(z) = D™f(2) * R} 1,f (2)
=(z+ ) [1+Ak- 1)]nakzk> . <z + ) [1+ Ak = D]"C(a k)a zk>
[ it vt (24 k

k=2

—z+ Z [1+ A(k — 1)]2"C(a, k)a27".
k=2

In 2002 Jahangiri et al. [7] introduced the modified Salagean operator of harmonic
univalent function. In 2003; Murugusundaramoorthy [13] introduced the modified Ruscheweyh
of harmonic univalent function. In the next definition we will modify the operator DR™ to
harmonic univalent function.

Definition 1.1. For harmonic function f = h+ g, we define the following differential
operator

D"f(z) = D"h(z) + D"g(z)
where ,n € N .

Recently, many researchers have showed an interest to invent classes of harmonic functions
defined by differential operators, convolution, and subordination. See [3], [6], [8], and [9].

We let Dy (n, @, 4, 1) denote the family of harmonic functions f = h + g for which
Re {(5”]“(2)) ’} > .

We further denote by Dy (n, a, 4, 1), the subclass of Dy (n, a, A, u) where
Dr(n,a, A, u) =T N Dy(n,a, A, 1.

2. COEFFICIENT BOUNDS

In this section, coefficient bounds of the classes Dy (n, a, A, u)and Dy (n, @, A, 1) are given.

Theorem 2.1. Let f = h 4+ g be harmonic function, 0 < ¢ < 1,n,a € Ny,a; = 1,4 = 0.
If
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where

o kA a) = [1+ Atk — 1] C(a, k).

Then f is sense preserving, harmonic univalent in U and f € Dy(n, a, A, ).

Proof-Note first that
W@l 2 1= @k dlall2
W k=2
> Z @(n kA, @) | by |24
k=2 ,
= 1g'(2)l,

so that f is locally univalent and sense preserving.

To show that f is univalent in U, we consider that the restriction in the theorem hold.
If g(z) = 0, then f is analytic. And then, the univalenceof fcomes from its close-to convexity.
If g(z) # Oand z,, z, are any distinct points in U, then

f(z) = fz)l _, _19(z1) = 9(2)]

|h(z,) = h(z2) |h(z1) — h(z,)]
1 z bi(7} = 75)
& (21— 73) + X, ag(2f — 25)
=2 k|b
o1 Zk_ozo |b,|
1=Xjz klay|
o A
i S b |
>1-—
- 0 tp(nk?ux)
1=22 1, |ak|
= 0.

Therefore, f is univalent.
Using the fact that Re w > pif and only if |1 — pu + w| = |1 + p — w]it suffices to show that

[1—u+ (07 @)| = [1+u - (D"r@)|
To do so, we have

|1 —u+ (D'"f(z))'| > |1 - (5nf(z))’|

>2(1- u)—chp(n kb @l |21 1—22 oG, ) lbellzl !
k=2

k, A, k, A,
>2(1—p) — { <z(p(n a) agl + (Z #a)lbkl>l

which is nonnegative by the theorem restriction, and so f € Dy(n, a, A, p)>O

Next theorem provides a coefficient bounds for the class D (n, a, A, ).
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Theorem 2.2.Let f = h + g be harmonic function. Then f € Dy (n, @, 4, u) if and only if

> (n, k, A, ) o,k o)
> T ey + e b <2
= L=n

Proof.Since Dy(n, a, A, ) € Dy(n, a, A, w)we only need to prove the (only if) part of the
theorem. To do so, assume that f € Dy (n, a, A, u)>Then by the assertion we have

Re{(D"f ()"} = Re {(D‘nhg))' + (5ng(z))'}

= Rel1= > o kA, Olaclz ™" = > o(n kA, QlblZFT( >
k=2 k=2

If we choose zto be real and let z - 1™ we get

1= @ kA 0lad = ) o0 k2, 0lbl >
k=2 k=2

Which is precisely the assertion of Theorem 2.2.01

3. DISTORTION THEOREM AND EXTREME POINTS

In this section, distortion theorem of the class Dy (n, a, A, w)is obtained.

Theorem 3.1.If f € Dy(n, @, A, 1), 0 < u< I,n,a €ENy,a; = 1;4> 0, and|z|] = r <

1, then
1- ¢o(n, 1,7 a)
< — 2
F@l<1+ lbllr(cp(n. 200 @21 |b1|>r
and
1- o(n, 1,7 a)
>1- — 2
f@)l = lbllr(tp(n. 2,00 o220 |b1|>r

Proof. The proof follows,immedeality, by the coefficient bound of the class
Dr(n,a, A, u).0
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ABSTRACT

In this paper, we investigate the dynamics of a stochastic delay differential equations (SDDEs)
of predator-prey system with hunting cooperation on predator. To prove the existence of global
positive solution, we use Milstein's scheme, to solve SDDEs of the prey-predator system.
Sufficient criteria for global existence are obtained. The increase of the noise intensity has a
drastic impact on the dynamical behavior of both species with or without the delay effect. Time-
delay plays a vital role in population dynamics of prey-predator, which has been recognized to
contribute critically to the stable or unstable outcomes of prey population due to predation.
Illustrative numerical examples are provided to show the effectiveness of the theoretical results.

Keywords: Hunting cooperation; Milstein's scheme; Stochastic Prey-Predator model; Time-
delay

1. INTRODUCTION

The study of prey-predator systems between two or more species to model life system
interactions is an important issue in biological systems (see, e.g., [5, 6, 10]). The dynamical
relationship between predator and their preys has been essential in theoretical ecology since
the famous Lotka-Volterra equations [7, 13], which is a pair of first order, nonlinear
differential equations that describes the dynamics of biological systems in which two species
interact. The system parameters have main role to determine the qualitative properties of
predator prey systems.

One major component of the predator-prey relationships is functional response, which is
refer to the change in the density of prey attached per unit time per predator as the prey
density changes. In [3], Holling discussed three different types of functional response to
model the phenomena of predation, the Holling type-I is of the form p(x) = nx and the Holling
type-1I is of the form p(x) = nx/(b + x), where x is the population density, n is the maximum
rate of predation, and b is the half saturation constant. Predator hunting cooperation can be
considered in the formulation of functional response, depends on prey and predator densities.
Consuming rate by predator increases as predator density increase. Thus, when the prey
density become low, hunting cooperation can be adverse to predator population itself.

Time-delays (time-lags) are incorporated into biological systems to represent the time
requiredfor maturation period, reaction time, feeding time, etc. See [9]. Herein, we
incorporate time-delay in the model for the gestation period of preys. It is also interesting to
study the impact of hunting cooperation in the dynamical complexities for the underlying
model.

Systems are often subject to environmental noise, which is important factor in ecosystems, to
suppress a potential population explosion. In reality, natural phenomena counter an
environmental noise and usually do not follow strictly deterministic laws but oscillate
randomly about some average values, so that the population density never attains a fixed value
with the advancement of time [2, 11]. Furthermore, environmental stochasticity can affect
large populations, as well as small. In [1] the authors studied the effect of environmental
fluctuations on acompetitive model for two phytoplankton species where one species liberate
toxic substances by considering a discrete time delay parameter in the growth equations of
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both species. Recently, some authors include the environmental noise into deterministic
biological models to show the stochastic perturbation effects.

In this paper, we deal with stochastic delayed prey predator model with hunting cooperation
on predator. In Section 2, we formulate a SDDEs prey predator model then we discuss the
qualitative behavior of the deterministic model and study the existence and uniqueness of
global positive solutions. Some numerical simulations are obtained in Section 3. Section 4
contains conclusions.

2. MODEL FORMULATION AND MAIN RESULTS

Consider the following prototypical delayed predator-prey model considering intra-specific
com- petition among predator and delay logistic growth functions for the prey

dfi(t” = r x(t) (1 - %) — £,y ©)y(®)
dy(0) M
T uf (x(t — 1), y(@®©)y(®) — Sy() — ay*(t)
with initial conditions
x(0)=¢1(0)>0,0€[—1,,0),01(0)>0,
(2)

V(0)=926)>0,0€[—12,0),92(0)>0

where x(t) and y(t) stands for population densities of prey and predator. The time delays 71, 7
isincorporatedtoconsiderthegestationtime,p;andg,arecontinuousboundedfunctionsin the
intervals [z;, 0] and [ 7,,0] respectively. The intrinsic growth rate of prey is denoted by 7,
where K is the environmental carrying capacity, o is the death rate for predator, a is the
predatorintra-specificcompetitionrate. Functionalresponsef{x,y)dependonbothpredator
andpreydensitiesanduistheconversionefficiency(0< u < 1).Assumethattypellfunctional
response has the form ox/(1 + cox), where gis the consumption rate of prey by their predator
and c is the handling time of the predator. We presume consumption rate depending on the
predatordensitytoinducepredatorcooperationforhuntingtheprey. Therefore,wetakea>0 is the
cooperativehunting  parameter.Hence,the  functionalresponse  takes theformf{x,y)=
(I+ay)x/(1+c(1+ay)x).

Herein,wewillstudytheeffectoffluctuatingenvironmentonthedynamicbehaviorof(1),with
time delays (71&72) which are introduced in the growth components for each of the species.
In  ordertostudytheeffectofenvironmentaldrivingforceonthedynamicbehaviorofthedelayed
model we incorporate white noise terms into the growth equations of both prey and predator,
thencorrespondingtosystem(1)weobtainedthefollowingstochasticdelayedmodel

dx(t) = [r x(0) (1 - M) — F(x(@®,y®O)y(©® | dt + o1x(®)dB, (®)

K
3
dy(t) = [uf (x(t = ), y(©))y(t) = Sy(t) — ay*(D)]dt + oy (t)dB,(t) )
with initial conditions (2), by assuming 6 € -7, 0], 7= max{zi, 72}, i.e. (xo, yo) = (¢1, 2)" €
C([—7,0],R2) with R?2 = {(x,y) eR?:x > 0,y > 0}, if x €R?, its norm is denoted by|x| =
VX2 + x2.B1(t), B, (t) are standard independent Wiener processes defined on a complete
probability space (2, A, {A}+>0, P) with a filtration {A}; o satisfying the usual conditions; and
041, 0y are the positive intensities of white noises.
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3. QUALITATIVE BEHAVIOUR OF THE DETERMINISTIC MODEL

Before analyzing the dynamics of model (3), we discuss the following results for the delayed
model (1) with initial conditions (2), for simplicity we consider K = 1, then the Jcobian matrix

at the interior equilibrium E*(x*,y") is given by

_ Al + Ble_/hl Az
Bye™*2 A

1+ ay”) —x"(1+ ay®)

Aj=1—-x"— JAy = ,
1 Y T O+ a2t T A+ e+ )
w1+ ayx* w1+ ay™)y”
A; = —-0—-2 *, B=_*IB=
3T W+ c(L+ay)x) @y LT TR T A+ )
e ———
22— (A, + A) A+ AjAs + (ByAs — By D)e ™ * — A,B,e ™2 = 0, (4)
e sSsssSSEEE—S—S——
* n==0 ————————————EEEEEEEEE

e i)y >0,,=0(i)z, >0, =0

0 =1, > 0 g S rh—————————————

25.

= ——

—w? — (A; + A)(Wi) + A1 A3 — A;By + (B1As — By(wi))e™a =0 (5)

w* + qw? +q, = 0. (6)

where q; = A? + A% + 24,B, — B%, and q, = (4143 — A,B,)? — B2A%. The local stability

ofE*

depends on the values of ql & q2. Therefore, equation (6) has positive
root if q1>0 and q,< 0, therefore, it has a pair of pure imaginary roots of
the form iwy, then from (5) we get

1 (A1A3—A;B,—w3)B1As | Bywé(Ay+A3) .
Tij=—[aT'CCOS[ 2. 2,02 42 22,0242 +2]7T(7)
Wy Biwg+Bi A3 Biw§+B1 A3
where j =0, 1, 2,. .., we arrive at the following theorem:

Theorem 1 The interior equilibrium point E* will be stable fort < 17, where 1] is obtained
from (7) by taking j =0 from.. For Tt > 17, E* will be unstable, and for t = tjit has a periodic
solution.

Now we study the existence of Hopf bifurcation with respect to the bifurcation parameter ;.
Theorem 2 System (1) undergoes Hopf bifurcation at the interior equilibrium E*whenzg =

le

where 14 is given by (7), such that R(Z—i\)_l > 0.
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Proof: We differentiate (5) with respect to 14, then substitute A = iw, after simplifying we
obtain

R(d_i)_l _ 2(wi—(A143—A,B)w§ ) +(A1 +ADHWS _ Biw§ /8)
- \
d (A1 +A43)2Wi+(Wi—(A143—4,B,))2  Biwg+BIAZwg

25.1.  Existence and uniqueness of the global positive solution

Herein, we will show the positivity of solution for model (3) and we will prove that the
enviromental noise holds the explosion for the delay equation.

Theorem-3 Let Z(t) = (x(t), y(t)) and |Z(t)| = /x%(t) + y2(t), then for any given initial
value Z(x) = {(X(K), y(K)): —1<k< 0}eC([—1, 0]; R2) there exist a unique positive solution
Z(t)

To (3) on t> — t and the solution will remain in RZ with property one.

Proof: From the biological point view, we will take into our consideration the positive solution
to model (3), assuming that x(t) = e™® y(t) = eP® and applying Ito"’s formula model

an be reformulated as follows

1+ 0eP®)eP® c?
_ (1 _ -1 _ ( _1
dn(t) = (1 e D ™ 3 )dt +6,dB, (£)

u(1+aeP®)enlt-72)

dp(t) = (1+c(1+aep(t))e"(t'f2)

_5— é) dt + 0,dB, (b). (9)

All the of (9) satisfy the local Lipschitz condition, then for any initial values n(x) =
Inx(x),p(x) = Iny(x),ke[—1, 0], there is a unique local solution n(t), p(t) on [—t, t,), where
t. is the explosion time. In order to show that the solution is global, it is sufficient to show

te=o as. Let [,>0 be sufficiently large so that Z(t) = {(d)l ®), 0, (t)): -

T<t< 0} €C([—7,0]; R2) all lie within the interval [li, lo]. For each integer [>l,, define the
0

stopping time

= inf(eel0,t) : x(0e (7.1), ¥ (.1),

where we set inf @ = oc. We consider ¢, is increasing as [—>oc . Let t,. = lim,_,.. t;, then t.<t,
a.s. If we show t, = « a.s. and Z(t)eR? a.s. for all t> 0. To show this statement, we define a
C2- function V:R2—R, byV(Z) =V, +V,,

Where V; = (x —logx —1) + (y —logy — 1), and V, = Iiﬂ[xz(s —t)+x(s—t)]ds. It is
easy to see that function V(Z) is non-negative. The rest of the proof follows that of [8].

4. NUMERICAL SIMULATIONS

In this section, we carry out some numerical simulations to display the qualitative behaviors of
model (3) for different values of t and ;, G, note that model (3) has multiplicative noise.
We utilize Milstein’s scheme [4] to illustrate our findings. In Fig. 1 we simulate model (3) when
61 =0, = Osuch that T1=0.2 &t =0.8 as in (a) & (c) respectively, and we observe that the
solution is asymptotic stable as in (a), if we increase the value of the environmental noise 6; =

6, = 0.001 and keeping T = 0.2 we can find a stochastically stable solution (b). Periodic
solution as in (c) is shown. Thus, by increasing the environmental noise 6; = ¢, =0.001 with
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the same magnitude of time delay the amplitude of stochastic fluctuation increases significantly
as in (d).

a b

0 20 20 60 80 100 120 140 160 180 200
Time(t)

120 140 160 180 200

s L L o S L L L
120 140 160 180 200 0 20 40 60 80

o L L L L
0 20 a0 60 80 100 100
Time(t) Time(t)

Figurel: Numerical simulations of the solution of the stochastic model (3) with parameter
values a=1.6, a=0.05, c=0.6, 6$=0.49, K=1, and p=0.9. (a) when o; = 05 = 0 and 1t =0.2, (b)
wheno; = 0, = 0.001 and t =0.2 which shows stochastically stable population distribution
for both species. Periodic solution for o5 = 0, = 0 and 1 =0.8 as in (c), while in (d) when oy =
o0, = 0.001 and t =0.8

CONCLUSION

In this work, we studied a stochastic predator-prey system with time-delay and hunting
cooperation on predator. We defined the characteristic equation of the deterministic model.
Some new and interesting sufficient conditions that ensure the local asymptotic stability for the
addressed model have been derived. We attained critical value of time delay where Hopf
bifurcation occurs. Existence and uniqueness of the positive global solution for such SDDEs
model have been discussed. The theoretical results and numerical simulations of SDDEs model,
we have seen thatfor small values of white noise has a significant impact on the dynamical
behavior of the model. The combination of stochastic effects and time delay increases the
complexity and enriches the dynamics of the model.
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ABSTRACT

In this paper, we are concerned with local existence and blow-up of a unique solution to the
Cauchy problem for a time-space fractional evolution system with time-nonlocal source terms
of polynomial growth. At first, we prove the existence and uniqueness of the local mild solution
by the Banach contraction mapping principle. Then, we show that such a mild solution is a weak
solution and we establish a blow-up result by the test function method with a judicious choice
of the test function. Finally, we establish an estimate of the life span of blowing up solutions
under some suitable conditions.

Keywords: Fractional derivatives and integrals; nonlinear evolution equations; local existence;
blow-up; life span

1. INTRODUCTION

In this paper, we consider the following Cauchy problem

D?
D;?

Lu+ (=) = ] ([v|P~t), x € IRN, £ >0,
v+ (—A)F/2y —joltaz(lulq u), x € IRY,t >0, (1)
u(x,0) = ug(x), v(x,0) = vy(x), x € IRV,

ot

olt

where N> 1, 0<aq,a, <1, 0< B <2, DOItls the Caputo fractional derivative operator

of order «;, ] OI . " is the left-sided Riemann-Liouville fractional integral of order 1 — a;
defined by

O =t f (6= )= f(s)ds,

where I’ is the gamma function, (—n)# /2 is the fractional Laplacian operator defined by
(—8)F2w(x) = FH(IEFFW) (©)) (),

forw € D((—A)P/?) = HB(IRV), where HP (IR") is the homogeneous Sobolev

spacedefined by

HP(IRY) ={w € S’; (—0)P/?w(x) € L2(IRV)}, if B ¢ IN,
HP(IRY) = {w € L2(IR"); (=0)F2w(x) € L>(IRV)},if B € IN,
where S’ is the Schwartz space, F is the Fourier transform and F 1 its inverse, and ug, v, €
Co(IRN), where Co(IR") denotes the space of all continuous functions decaying to zero at
inﬁnity
If DOIt is replaced by the first differential operator d /dt we have the following problem
studied by Fino and Kirane [4],

* Corresponding author
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up + (AP 2y = joltal(lvlp ), x € IRN,t > 0,
v + (=P 2y = ]0 o2 (lul? w), x € IRN, £ > 0,
u(x,0) = uy(x), v(x,0) = vy(x),x € IRV,

First, they studied the case f = 2. They validated the system by an existence-uniqueness
result. And then they gave the blow-up rate of solutions and the necessary conditions for local
or global existence. Finally, in [4, Remark 2], they claimed that using the same method, one
can extend thiscaseto 0 < 8 < 2.
This paper is organized as follows: In section 2, we present some definitions and results that
will be used throughout this study. In section 3, the local existence and uniqueness of mild

solutions of problem (1)are established. In Section 4, blowing-up solutions are shown to exist,
while in Section 5, we establish an estimate of the life span of blowing up solutions.

2. PRELIMINARIES

In this section, we present some definitions and results that will be used in the following
sections, which can be found in [2, 5]. Let a be a real constant such that 0 < a < 1.
The Caputo derivative of order «, for a differentiable function f, is defined by

1 t
5O = =g | €~ 97 ().

The left-sided Riemann-Liouville fractional derivative of order «, for a continuous function f,
is defined by

DO = e [ e-orereas

The right-sided Riemann-Liouville fractional derivative of order «, for a continuous function
f, is defined by

1 d (T a
t|Tf(t) maﬁ (t—s)"*f(s)ds.

Furthermore, for every f,g € C([0,T]) such that Dg,f, D{rg exist and are continuous, the
formula of integration by parts can be given by

f 9(ODEf(@®)dt = f F(ODEg()dt.

The relation between Caputo and Riemann-Liouville derivatives is
DG f (&) = Dgi[f (&) — £(O)].

The Mainardi's function is given by

(~2)k
M(Z) Zm 0<a<1,ZE(C.

The Mittag-Leffler operators based on the analytic semigroup T(t) generated by the space
fractional operator (—A)#/2 are defined by

aﬁ(t) = J.OOM (S)T(Sﬂ)ds_ jwM (s)e st (= A)p/zds’
Sop(0) = I asMy(s) T(Sz“)ds_j asM(s)e O™ g

3. LOCAL EXISTENCE

In this section, we give the local existence and uniqueness of mild solution of the problem (1).
First, we give the definition of mild solution of (1).

Definition3.1. (Mild solution) Let uy, vy € Co(IRY) and T > 0.We say that (u,v) €
C([0,T], Co(IRY)) x C([0,T], Co(IR")) is a mild solution of (1) if (u,v) satisfies, for t €
[ 0, T], the following equations
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t
u(t) = Pg, p(O)ug + f (t = )78, 5 (t =)o (WP w)ds,
0

t
v(t) = Pg, g (Vo +f (t = $)%71Sg, 5 (t — $)Jgs 2 (Jul T w)ds,
0

Theorem 3.2. (Local existence) Let ug, vy € Co(IRN). Then, there exists a maximal time
Tmax >0 such that the problem (1) has a wunique mild solution (u,v) €
C([0, Trax), Co(IRN)) X C([0, Trnax), Co(IRN)). Furthermore,

either Tpgy = +0 01 Trgyr < +00 wWith  lim (”u(t)”Loo(IRN) + ”U(t)”Loo(IRN)) = +o0,
t=>Tmax
If, in addition, ug, vy = 0,ug # 0,v9 £ 0, then u(t),v(t) > 0 forall 0 < t < Tpyay-

4. BLOWING UP SOLUTIONS

Definition 4.1. (Weak solution). Let ug, v € Lio,(IRY) and T > 0. We say that (u,v) is a

weak solution of (1) if (u,v) € LP((0,T), Lio.(IRN)) x LP((0,T), Lj5.(IRN)) and satisfies the
following equations

[o [ oD w1 Ge e+ [ [ Rt (L v 127 My (s Ddxde

= [ [ o 02y (e dxde+ [ i OD pyr 1 (x )l

[y [on D8y (e ddxde+ [ [ J6 () u |4 s (x Hddt
—f JRNv(&t)(—A)ﬂ/zt//z(&t)ddeII Wx, OD 2y (x £ dxdt,

for all test functions ;, 1, € C*([0,T ,Hﬂ(IRN)) such that Y, (x, T) = ¥, (x, T) = 0.

Lemma 4.2.[3] Letug, vy € Co(IRY),T >0 and (u,v) € C([0,T],Co(IRV))? be a mild
solution of (1). Then (u,v) is also a weak solution of (1).

Theorem 4.3. Let ug, vy € Co(IRN) withuy = 0, vy = 0,uy % Oand v, # 0. If

N <mi { 1 1 }
— < min , ,
B a(p—-1)"a(g—1)
then the solution of (1) blows-up in a finite time.

5. LIFE SPAN OF BLOWING UP SOLUTIONS

In this section, we give an upper bound estimate of the life span of the blowing up
solutions with some special initial datum. To this aim, we consider the following problem

Dgiu, + (—0)F2u, = Joi " (v [P v,), x € IRV, £ >0,
Do ve + (=8)F/2v, = J§, “* (lue|97 u,), x € IRVt >0, @)

ue(x,0) = eug(x), ve(x,0) = evy(x), x € IR,
where £ > 0 is a small parameter, 0 < a;, @, < 1,0 < B < 2 and ug, vy € Co(IRN)
satisfies

5
U (%) = Mo x| 7%, v (x) = nglx| 75, x| = g, N < 8 <=

)

for some positive constants m,, n, and &y, where
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o = max{a,,ar ), 6 = min{(a—al)N+ %,(a—az)N+ %}

Theorem 5.1. Suppose that (3) holds. Let [0, T,,q.) be the life span of the solution (u.,v,) of
the problem (2). Then there exists a positive constant C such that

Eﬁ&ﬁ,n=%‘s—%+mx{“‘]v—#,%—ﬁ} < 0.
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ABSTRACT

The solution of fractional integro-differential equations, in the Volterra sense, is very important
to describe the behavior of linear and non-linear problems. In this article, we discuss the
analytical approximate solution for a class of fractional Volterra integro-differential equations
oforder 23, where 0 < f < 1. The fractional power series method (FPSM) is applied to provide
the analytical solutions in the form of rapidly convergent fractional power series (FPS)
depending on the residual error function and Taylor series generalized formula under the Caputo
sense. In order to validate the effectiveness, potential, and simplicity of the proposed approach
in solving such equations, numerical examples are performed. The analysis of the obtained
results shows that the FPSM is simple, straightforward and appropriate tool for solving various
forms of these equations.

Keywords: Fractional power series method,fractional Volterra integro-differential equation,
Caputo fractional derivative.

1. INTRODUCTION

In recent times, fractional Integro-differential equations (FIDEs) have played a vital role in the
mathematical formulation of various problems that arise in fields of engineering and sciences,
such as fluid dynamics, the theory of elasticity, electrodynamics, oscillating magnetic field, and
so on [ 1-4]. The derivatives of fractional order provide an excellent tool in order to describe the
memory and hereditary properties of different problems. Solving the FIDEs exactly is
occasionally too complicated task, and hence finding good approximate and numerical
solutions for this kind of equations using numerical methods will be very valuable.

Our concern in this work is to provide the analytic approximate solutions using fractional power
series method (FPSM) for a class of fractional Volterra integro-differential equations(FVIDEs)
of order 2 of the form:

DI R(E) + h() = [, o(t, Dh(E)dE +f(©), B € (0,11, M
subject to initial condition

h(ty) = hy and Dfa,h(to) =h,. 2)

where ¢ is a continuous function oft, w(t,s) is called a crisp kernel function, hy, h; € R and
3
is unknown function which needs to be determined.

Investigations of Volterra and Fredholm FIDEs by using different numerical methods are
done by many experts. Among of these methods: variational iteration method [3];Adomian
decomposition method [4];Spectral-collocation method [5];Homotopy perturbation method
[6];Generalized Taylor matrix method [7].Further research papers regarding numerical
techniques for integro-differential differential equations, we refer to [8-17].

This paper introduces a powerful analytical method, called fractional power series method
(FPSM) for solving linear farctional Volterra integro-differential equations. This method

the operator D, indicated to the Caputo derivative of fractional order in crisp sense. Here h(t)

" Corresponding author: Rania Saadeh

165



combining of generalized Taylor formula and the concept of the residual error function under
the Caputo meaning. The FPSM help us to obtain the approximate solutions in the form of
convergent FPS without linearization, perturbation, or discretization [18-24]. It was applied
successfully to solve different types of ordinary, fractional and fuzzy differential equations. The
structured of this paper is as follow: In Section 2, some basic mathematical concepts are
described. The analysis of the proposed method is given in Section 3. Simulations and test
applications are performed to show the performance of the FPSM in Section 4. In Section 5,
the conclusion is presented.

2. BASIC MATHEMATICAL CONCEPTS

The purpose of this section is to present some basic definitions and facts related to fractional
calculus and fractional power series, which are used in this study [25-37].

Definition 2.1. The Caputo fractional derivative of a function h of order § > 0 is defined by:

L () 1<B< €N
= —prr A1, m— m,meN,
DEh(ey =1 " =P an(t me
ﬁh(t) B =m.

Definition 2.2.A fractional power series (FPS) representation at t = t,is given by

D byt = 6V = ho + hy (¢ = £)8 + hy(t = £ + -+,
=0

where 0 <k —1 < f < kandt = ty, and h;’s are the coefficients of the series.

Theorem 2.3.Suppose that h has the following FPS representation at t,

R = D (e =), &)
=0
where 0 < k —1 < B < k,t € [to, to + R).If h(t) € C[to,to + R, and DIFh(t) € C(to, to +
jB .
R), for j = 0,1,2, .., then coefficients h; will be in the form h; = ?f(j;itf)), where Dgﬁ = Df .

Df Df (j-times).

Lemma 2.4.Suppose that h(t) € C[to, to + R),R > 0, thf h(t) € C(to to + R),and 0 < B <
1. Then for any j € N, we have

(]tJﬁDJﬁh) (t) — (jgﬂ)BDgﬂ)Bh) (t) = h(to)

F(],B +1)

wherejtj OB is the Riemann-Liouville fractional operator of order S.

———(t —to)/P,

Theorem 2.5. Let h(t) has the FPS in (3) with radius of convergence R > 0, and suppose that
h(t) € Clto,to + R), D}’ h(t) € C(to,to + R) forj = 0,1,2, .., N + 1. Then,

h(t) = hy(t) + Ry(9), (4)

Pty ig p{* P h(¢) N+1)p
where hy(t) = Z} —0 I"(JB+1) ———(t — ty)* and Ry(() = (t—ty) for some

( € (tOrt)-

r'(N+1)B+1)
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3. ANALYSIS OF PROPOSED ALGORITHM

In this section, we give the approximate solution of FVIDE (1) and (2) by means of the propsed
method. The fractional power series (FPS) solution of (1) about t, = 0 has the following
general form:

h(t) = ;) hkm (5)

Subsequent, consider the nth-FPS solution by the following truncation series:
n £k B
h,(t) = ;hkm (6)

B
From initial condition (2), we have hy(t) = hy + hy ﬁ, which represents the first-FPS
approximate solution of FVIDE (1) and (2). So, the expansion (5) will be written as

th - tkh
hn(t) = h() +h1m+kzﬁhkm. (7
Now, define the following residual function:
t
Res(®) = DEA() + h(®) - | w(t,DREE = F©, ®)
0
Consequently, the nth-residual function is given by
t
Resn(®) = D hn(@) + hn(®) = | (6, Dha(6)dE = £(0). ©)
0

In order to find h,, h3, hy, ..., we consider the nth-FPS solution forn = 2,3,4, ... in (7),substitute

52—2)3

Dé’l_z)ﬂResn(t) =0,n=234,..
t=0

it into (9), compute D of the obtained equation and then lastly find the solution of

4. SIMULATION AND TEST APPLICATIONS
This section aims to test the validity and reliability of FPSM by applying it on two fractional
integro-differential equations of Volterra type.

Application4.1 Consider the following fractional integro-differential equation of Volterra type:

Dgfh(t) + h(t) =t + cos(t) — f t(t —Oh(E)dE, B € (0,1],t >0, (10)
0

with the initial conditions

h(0) = Oand D§+h(0) =1. (11)

The exact solution at § = 1 is h(t) = sin(t).
Following the procedure of RPS-algorithm, the FPS approximated solution of IVPs (10)
and (11) has the form
thp

n
= _— 12
h, (t) t+;h"r(kﬁ+1) (12)

Consequently, the nth-residual function is
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Res,(t) = D%,

0+

tkp

”kZthkﬁﬂ)

n
+ t+;hk—1"(kﬁ+1)

tkp

t n 4 (13)
+ | (¢- +Zh—d—t+cost.
| =0+ D hupggry ) o = e s
k=2
Table 1:Numerical results for Example 4.1 at § = 1.
t h(t) hyo (1) |R() — hyo (D)
0.2 0.1986693307950612 0.1986693307936508 1.4104 x 10~12
0.4 0.3894183423086505 0.3894183415873016 7.2135 x 1071°
0.6 0.5646424733950355 0.5646424457142858 2.76807 x 10~8
0.8 0.7173560908995228 0.7173557231746032 3.67725 x 10~°
Table 2: Numerical results for Example 4.1 at different values of 3.
10™ RPS solutions
t
B=1 B =0.95 B =0.85 B =0.75
0.2 0.1986693308 0.2147230340 0.2499422596 0.2887197469
0.4 0.3894183416 0.4041866964 0.4319930895 0.4549562225
0.6 0.5646424457 0.5698565436 0.5735772157 0.5659522268
0.8 0.7173557232 0.7070947397 0.6766998551 0.6329008430

Numerical results for the 10%-approximated are given in Table 1 with step size 0.2 at § =
1. In which the 10™-approximated for different values of 5, whereas f = 0.95, 8 = 0.85, and
B = 0.75 are presented in Table 2. From these tables, it can be noted that the RPS method
provides us with an accurate approximate solution, which is in good agreement with the exact
solutions for all values of t in [0,1].

CONCLUSION

In the present article, the analytic-numeric solution of linear fractional integro-differential
equations of Volterrta type is constructed and analyzed by utilizing an efficient and accurate
algorithm, named fractional power series algorithm. The FPS algorithm provides good analytic-
numeric approximate solutions close to exact solutions. Two illustrative applications are tested
to illustrate the accuracy and simplicity of the aforesaid method. Obtained results emphasized
that the proposed method is a powerful and suitable technique to obtain the analytic-numeric
approximate solutions for various types of fractional differential equations.
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ABSTRACT

Fuzzy initial value problems of fractional order play a vital role in modeling several realism
matters arising in the natural sciences and engineering fields. In this paper, the fuzzy
approximated solution of linear fuzzy fractional IVPs under the assumption of strongly
generalized differentiability have been provided using fractional residual power series (FRPS)
method. The solution methodology of the proposed algorithm depends on producing the
solutions in r-cut representations with rapidly convergence fractional power series (FPS).
Numerical problem is performed to demonstrate the accuracy, performance, and reliability of
the present method. The effects of the fractional order a and the parameter r have been shown
graphically and quantitatively. The results obtained indicate to an agreement well between the
fuzzy exact and fuzzy approximated solutions, as well as satisfy the symmetry convex triangular
fuzzy number. Therefore, the FRPS method is an accurate, effective, simple and suitable tool to
apply in finding the solutions of such problems.

Keywords: Fuzzy number, fractional residual power series method, fuzzy fractional initial value
problems, strongly generalized differentiability

1. INTRODUCTION

Fuzzy differential equations (FDEs), being a significant area of study the behavior of
dynamical systems, has captured the interest of several scientists during past decades. It has
wide applications in various and engineering and physical processes [1-8]. The starting point
of the fuzzy derivative was introduced by Chang et al. [9], and then Dubois et al. [10] have used
the extension principle in their approach. Later on, Puri and Ralescu [11] developed the
derivative for fuzzy-valued mappings by generalized and extended the concept of Hukuhara
differentiability for set-valued functions to the class of fuzzy functions. Subsequently, Kaleva
[12] and Seikkala [13] started using the Hukuhara derivative to develop the theory of fuzzy
differential equations.

This article purposes to employed an numerical-analytical recent approach, called fractional
residual power seies (FRPS) algorithm for solving the following fuzzy fractional IVPs

{Dg’afu(x) =F(x,u(x)),0<a<1x€[01] M

u(0) = u,

where Dg+ is the fuzzy Caputo fractional derivative of order @, F:[0,1] X Rf = Rg is a
continuous nonlinear fuzzy-valued function, uy € Ry and u(x) is unknown analytical function
to be determined.

The fractional residual power series (FRPS) method is a numeric-analytic method for
solving different types of ordinary, partial, and fuzzy differential equations of arbitray order.
The starting point of this method had been presented by Abu Arqub in [14]. The methodology
of the FRPS approachgives a Maclaurin expansion of the solution based on the Caputo sense
[15-24]. Throughout this article R denote the set of fuzzy numbers on R.
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2. PRELIMINARIES AND NOTATIONS

Definition 2.1. Suppose that @ is a fuzzy subset of R. Then, ¢ is called a fuzzy number such
that ¢ is upper semicontinuous membership function of bounded support, normal, and convex.

Definition 2.3 The complete metric structure on R is given by the Hausdorff distance mapping
Dy: Ry X Ry > RTU{0} such that Dy (p,w) = supg<r<1 max{|@1, — w1l |@2r —
wW,|}, for arbitrary fuzzy numbers @ = (¢4, @;) and w = (w1, W,).

Definition 2.4.For fixed x, € [a, b] and u: [a, b] = Ry, the function u is called a strongly
generalized differentiable at x, if there is an element u’'(x;) € Ry such that either:

1) The H-differences u(xy +¢) © u(xy),ulxy) ©ul(xy —¢) exist, for each €¢>0

sufficiently tends to 0 and liI(I)1+ w =u'(xy) = lir(l)l+ M,
E— E—
2) The H-differences u(xy) © ulx, + &), ulxy — &) O u(x,) exist, for each £>0
sufficiently tends to 0 and lim Ulxo) Quxo te) _ u'(xy) = lim $%o=8)99(x0)
e—0* E 07 7 o+ —& ’

where the limit here is taken in the complete metric space (R, Dy/).

Definition 2.5. Let u:[a,b] » Rz and u € C¥[a, b] N L¥[a, b]. One can say u is Caputo
1 fx u' (1)

ri-a)’a (x-t)f

As well, we say that u is Caputo[ (1) — a]differentiable if u is (1)-differentiable and u is Caputo

[(2) — a]differentiable if u is (2)-differentiable.

fuzzy H-differentiable at x when DJiu(x) = dt exists, where 0 < @ <1 .

Definition 2.6. A fractional power series (FPS) representation at x = a has the following form
Yo ur(x — @)* = up +u (x — a)* + ¢ (x — a)?% + -+,
where 0 <n—1 < a <nandx > a, and u,’s are the coefficients of the series.

Theorem 2.7.Suppose that f (x) has the following FPS representation at x = a
fx) =Y ourx—a)*, m—1<a<ma<x<a+R.
where f(x) € Cla,a + R) and D(’;ixf(x) € C(a,a+R) fork =0,1,2, .., then the coefficients

Dka ( )
gt/ such that Dga = g+ : Dg+ s Dg+ (k-times).

i will be in the form wy = 7=

3. FUZZY FRACTIONAL INITIAL VALUE PROBLEMS

The (n)-solution of FFIVPs (1) is a function u:[0,1] » R that has Caputo [(n) — a]-
differentiable and satisfies the FFIVPs (1). To compute it, the next algorithm show us the
strategy to solve the FFIVPs (1) in parametric form in term of its r-levels representation.
Indeed, there are two cases depends on differentiability type [25-32].

Algorithm 3.1: To determine the (n)-solutions of FFIVPs (1), there are two cases:

Case (I): If u(x) is Caputo [(1)- a]-differentiable,the FFIVPs (1) will be converted to the
followingcrispsystem; Then, do the following steps:

D(‘)Z*'ulr(x) = Flr(x' ulr(x)'qu(x))
Dg*'qu(x) = FZr(x: ulr(x)Jqu(x))’ (3)
u1r(0) = Ug1r,and Uy, (0) = gy

Stepl: Solve the system for uq,-(x) and u,,(x)
Step2: Ensure [y, (x), up,(x)], and [D&uy,(x), DSruy,(x)]are valid level sets for r € [0,1].
Step3: Construct the (1)-solution, u(x) whose r-level representation [y, (x), Uy, (x)].
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Case (II): If u(x) is Caputo [(2)- a]-differentiable,the FFIVPs (1) will be converted tothe
following crisp system; Then, do the following steps:

Dg*'ulr(x) = FZr(x: ulr(x)Jqu(x))
Dg+u2r(x) = Flr(x' ulr(x)'qu(x))’ 4
U1 (0) = U1, and uy,-(0) = Ugy,

Step1: Solve the system for u4,-(x) and u,,(x)
Step2: Ensure [y, (x), uz,(x)], and [D§u,,(x), D&vuy,(x)]are valid level sets for r € [0,1].
Step3: Construct the (2)-solution, u(x) whose r-level representation {14, (x), Uy, (x)].

4. DESCRIPTION OF FRPS METHOD

In this section, we show the basic idea of the FRPS method in finding the(1)-solution for the
system of OFDEs (3). In the same manner,we can apply the propsed method to construct (2)-
solution of (4). To reach our purpose, we suppose that the solutions of (3)abouta = Qare given
by
w0 (¥) = B0 e, “
Uy, (x) = Z;‘;O pjx’%.
Using the conditions (3), the approximate values of (5) can be found usingm®-truncated
series:
um,lr(x) =Yoot 2721 ijjfx, )
U2 () = po + X705 pjx’%.
In order to determine the unknown coefficients yjand Ui for j = 1,2, ...,m, we define the
following m™-residual functions:
Resm,lr(x) = Dg"'um,lr(x) - Flr(x' um,lr(x)' um,zr(x))a %
Resm,Zr(x) = Dg"'um,zr(x) - Fzr(x' um,lr(x)' um,zr(x))-
From (6), we notice that nlll_r)rgo Resp, nyr (x) = Resy,(x) = 0, foreachx > 0 and n € {1,2},

which leads Dé’i_l)aResm,nr(x) =0. Furthermore, DéT_l)aResnr ) =
DIV Resyynr(0) = 0, for eachm = 1,2, ..., .

5. Numerical Experiment

In this section, we consider a linear fuzzy fractional initial value problem to illustrate the
efficiency and applicability of the FRPS algorithm. Here, all the symbolic and numerical
computations performed by using Mathematica 10.

Example 5.1 Consider the following linear fuzzy fractional initial value problem:

{Df,ﬂu(x) =[r+13-r]+u(),x€[01],0<a<1, ®

u(0) = 0.
Based on the type of differentiability, then the FFIVPs (8) can be converted to the following

systems:
Casel: Under Caputo [(1)- a]-differentiability, the system of OFDEs is given by

DGty () =y, (0) = (r +1) = 0
{Df)ﬂun(x) — Uy () —(B—-7) =0, )
uy-(0) = uy,(0) =0

173



In view of the last discussion for the FRPS algorithm, starting with u4,,-(0) = 0, and

g,2-(0) = 0 and depend on the result D(m D Res1r(0) = (m D% Resy 2 (0) = 0,m =
1,2, ...,6, the 6"-FRPS approx1mated solutlons for (9) are given by

x2 x3 x* x5 x6¢
Us, 1’“(x) =0+1 (I"(a+1) ra+1) ' r@Ga+1) rae+l)  rGa+l) t r(6a+1))’
xza xsa x‘l-(l xS(X x6(l
Us2r(x) = (3 —1) (r(a+1) rza+1) ' r@a+1l) ' r@a+1l) ' rGa+l) r(6a+1))'

Hence, the approximated solutions for OFDEs (9) can be written as

xza xsa x4a xS(I xﬁa

r(a+1) ' r@za+1) ' r3a+1) ' r@a+1) ' ra+1) ' rea+i) )
xza xsa x4a xS(I xﬁa

Uupr () = (3 — )(F(a+1) ra+l) ' rGa+l) | r@a+l) ' rGatl) r(ea+1)+"')

gy (1) = + 1) (-

which are coincide well with the Taylor series expansion of the exact solution [u(x)]" =
[r+1,3—r](e*—1) whena = 1.

Case2: Under Caputo [(2)- a]-differentiability, the system of OFDEs is given by

D3+u1r(x) —Upy(x)—B-1)=0
{Dg“'qu(x) —u;,; () - (r+1) =0, (10)
uy-(0) = uy,(0) = 0

By FRPS-algorithm, the 6"-FRPS approximated solutions for OFDEs (10) are given by
_(B=r)x%  (r+Dx?* | 3-r)x3% | (r+Dx*® | 3-r)x%* | (r+1)x%¢
Ug,1r (%) = (r(a+1) + rQa+1) r@a+1) = ra+1)  rGa+l) r(6a+1))’
_((r+Dx% | 3-Mx2® | (r+D)x3% | B-r)x** | (r+Dx5% | (3-r)x®*
U 2r () = (r(a+1) ra+1) r@a+1l) r@ae+l) rat+l) F(6a+1))'

Thus, the approximated solutions for OFDEs (10) can be expressed as

() = ((3—r)x“ (r+1)x2%  GB-rx3% (r+Dx**  GB-rx5¢  (r+1)x°¢ )
UrX) = r(a+1) rQ2a+1) r(3a+1) r(4a+1) r(sa+1) rea+1) ’

(x) = ((r+1)x“ (B-r)x2%  (r+1)x3% GB-r)x** (r+1D)x5%  (3-r)x°¢ )
UorWX) = \T@+D © Ta+D) ' rGa+d) | rGa+t) | rGatl) | rG6atD

which are coincide well with the Taylor series expansion of the exact solution [u(x)]" =
2 +[1—r,r—1](1—e ) whena = 1.

To show the accurecy and efficiency of the method. The absolute errors of u;,-(x) and
U, (x) have been obtainedin Table 1 at @ = 1 for different values of , FFIVPs (9), case 1.

Table 1: Absolute errors of uy,-(x) and u,,(x) at @ = 1 and n = 8, for Example 5.1, case 1.

Uy (x)

X r=20 r = 0.5 r=1
0.16 0.0 0.0 0.0
0.32 1.000 x 10710 0.0 3.00 x 10710
0.48 4.000 x 107° 6.000 x 10~° 8.00 x 107°
0.64 5.300 x 1078 7.900 x 1078 1.06 x 1077
0.80 4.020 x 1077 6.030 x 1077 8.04 x 1077
0.96 2.109 x 107° 3.164 x 107 4.21x107°

Uy, (X)

X r=20 r=20.5 r=1
0.16 0.0 0.0 0.0
0.32 4,00 x 10710 0.0 3.00 x 10710
0.48 1.20 x 1078 1.00 x 1078 8.00 x 107°
0.64 1.59 x 1077 133 x 1077 1.06 x 1077
0.80 1.20 x 107 1.00 x 107 8.04 x 1077

174



0.96 6.32 x 107° 5.27 x 107 4.21x 107

As well, we have been given in Table 2, the numerical results of th 8"-FRPS approximated
solutions, for case 2 at different values of @ and r with some selected grid points on [0,1].

Table 2: Approximated solutions of uy,-(x) and u,,(x), atn = 8, for Example 5.1, case 2.

ug (%)
T; X; a=1 a=09 a=0.8 a=0.7
0.2 0.53344013 0.66818510 0.83949977 1.06177122
05 0.4 1.14848937 1.36694023 1.63804155 1.98417478
) 0.6 1.41864337 2.17213346 2.54636969 3.02406979
0.8 2.17574570 3.12343484 3.61608252 4.24615929
0.2 0.44280551 0.56106631 0.71481241 0.91898984
1 0.4 0.98364939 1.18748975 1.44521580 1.77954105
0.6 1.64423754 1.93769061 2.30515534 2.77803422
0.8 2.45108105 2.84587694 3.33826533 3.96963386
Upr ()
T X; a=1 a=09 a=0.8 a=0.7
0.2 0.35217089 0.45394752 0.59012504 0.77620845
05 0.4 0.81880941 1.00803927 1.25239005 1.57490781
' 0.6 141864337 1.70324777 2.06394099 2.53200698
0.8 2.17574570 2.56831904 3.06044813 3.69317084
0.2 0.44280551 0.56106631 0.71481241 0.91898984
1 0.4 0.98364939 1.18748975 1.44521580 1.77954105
0.6 1.64423754 1.93769061 2.30515534 2.77803422
0.8 245108105 2.84587694 3.33826533 3.96963386
CONCLUSION

In this paper, the fractional residual power series algorithm has been applied to investigate the
solution of linear FFIVPs under the assumption strongly generalized differentiability. The
present algorithm gives accurate and efficient analytical solutions without require being
linearized, discretized or perturbation. From obtained results, the fuzzy approximated solutions
are coinciding well with each other, and with the fuzzy exact solution as well indicate that the
proposed approach is a direct, simple, and very convenient algorithm to solve such problems
and suitable to deal with a wide variety of other fuzzy differential equations of fractional order.
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ABSTRACT

Optimum stratification is the method of choosing the best boundaries to make strata
homogeneous .It is used to attain more precision and accuracy than other methods of sampling
. The main idea behind this method is that a heterogeneous population is partitioned into
subpopulations, each of which is internally homogeneous. The main obstacle associated with
stratified sampling is how to gain the optimum boundaries with minimum variance .It is well
known that several numerical and computational methods have been changed for this goal ,
some of them are designed to highly skewed populations and others to any kind of populations
This paper considers an Artificial Bee Colony (ABC) algorithm to arrive at the optimum of
stratum boundaries depending on Neyman Allocation The ABC algorithm is used on two
groups of populations and a comparative study with Particle Swarm Optimization (PSO) is
given . The paper concludes that numerical results show that the proposed algorithm is able to
find the optimum stratum boundaries for a set of standard populations and various standard test
functions compared with (PSO) algorithms.

Keywords:Stratified random sampling; Neyman Allocation; Artificial Bee Colony ; Particle
Swarm Optimization Optimum Stratum Boundaries

1. INTRODUCTION

Stratified random sampling or proportional random sampling is a commonly used
sampling method especially for heterogeneous populations. Stratified sampling is preferably
chosen for its capability of improving statistical accuracy resulting in a smaller variance of the
estimator, in comparison with simple random sampling. In order to decrease the variance of the
estimator in stratified sampling [2 ].

Several numerical and computational methods have been invented to achieve the optimal limits
in class sampling. Some apply to highly deviant populations while others apply to any type of
population. A very early and simple method is the cumulative square root of the cumff method
of Dalenius & Hodges in 1959 [6]. We also propose the Lavallée and Hidiroglou [13] algorithm
for highly skewed groups, while Kozak (2004) [12] and the Kennedy & Eberhart method in
2001 (pso) [9] were preferred to non-perverted populations.

This study proposes the ABC algorithm for defining stratum boundaries. In order to find
out the efficiency of ABC algorithm,it is compared with Particle Swarm Optimization (PSO)

2. STRATIFIED RANDOM SAMPLING

The equal allocation method is considered the simplest one where each stratum sample has
the same size. With the Neyman allocation method, the sample size in each stratum follows
Neyman allocation.[14]

we have each character expresses the value as follows: Y:stratification variable;
N:population size; n: sample size; L: number of strata; Nh: number of elements in stratum h(h
=1, ..., L);nh: sample size in stratum h; : mean of elements in stratum h; estimated mean
in stratified sampling :variance of the estimated mean in stratified sampling .[1]

In stratified sampling [5], a population with N units is separated into L groups with
N1,N2, ...,Ni, ...,NL units respectively. These groups are called strata. like that
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1+N2+..+Nh+..+NL=N ......... (1)

We also have a variance in the mean of the stratified sample is:

V() = szhﬁ e (2)

The equation for Neyman allocation is written as follows .
L 2
1
ey gso =3 ZWhGh e (3)
h=1

3. WHAT IS THE ARTIFICIAL BEE COLONY ALGORITHM

The artificial bee colony algorithm was proposed by Karaboga in "2005" to develop the
digital function .It simulates the colony of bees depending on the intelligence of a swarm. The
following are some of the main steps of the artificial bee colony algorithm[7]

The colony has three kinds of bees: employed bees, onlooker bees and scout
bees. Employed bees cover half the colony , and the other half is onlooker bees. The employed
bees search for the food source and send the information of the food source to the onlooker
bees. The onlooker bees choose a food source to exploit the information shared by the
employed bees. The scout bee, which is one of the employed bees whose food source are
abandoned, finds a new food source randomly. We can employ and adopt food source as a
solution for development. Denote the food source number as SN, the position of the i food
source as xi(i =1,..., SN), which is a D dimensional vector [8,11].

In ABC algorithm, the ith fitness value i fit for a minimization problem is defined as[10]:

1 iff; >0
fitness; = |[ /(1 +6) BREE (4)
1+ abs(fi) if fi <0

Where( f;) is the cost value of the i solution. The probability that food source being
selected by an onlooker bee is given by:

p; = fitness l/
i = SN g
! 2o, fitness

_ fitness ;
pi = ((0.9) l/max(fitness ))+0.1

A candidate solution from the old one can be generated as:
vij = Xij + Py (Xjy — Xi) e (6)

Where k € {1,2,...,SN} and j € {1,2,...,D} are randomly selected indices,;; [-1, 1] is a
uniformly distributed random number. The candidate solution is compared with the old one, and
the better one should be remained [8].*If the abandoned food source is x;, the scout bee exploits
a new food source according to:

Xij = Xmin,j + rand(O,l)(XmaX,j - Xmin,j) .................. (7)

Where Xpayj and Xpayj are the upper and lower bounds of the j™ dimension of the problem’s
search space [11].

4. SEARCH MECHANISM

The exploration and exploitation abilities are essential for the population based
algorithms¢ So it is very important to balance these two abilities to gain good optimization
performance .



The modified search equation in onlooker bee stage is described as follows[9]:
Vij = Xjj + (bl] (Xii - ij) + 191] (yl - Xii) ................. (8)

Where & {1,2...., SN} is a random selected index which differs from i € {1,2,...,SN},j €
{1,2, ..., D} is a random selected index, y ; is the /" element of the global best solution,[

b = (=1,1),9; € (0,1.5) , are both uniformly distributed random numbers.

by “DE/current-to-rand/1” [4] mutation strategy and based on the property of ABC
algorithm, a new search equation in employed bee stage is proposed as follows:

Vi] = Xi,j + (l)ij(xij - ij) + \91] (Xrl,j - szj) ...................... (9)
Where Cl)l] = (—1,1) ,191] € (0,05)
&ie{1,2,..,5N},je{1,2,..,D},r1 € {1,2,...,SN}and rl #r2 # i

More easily and clearly, the new research equation and research mechanism is proposed
to balance exploration capacity and utilization capacity in the ABC algorithm.

5. NUMERICAL EXPERIMENTS

The ABC experiments for the stratification sampling has been on populations data and
functions, to find optimal strata boundaries based on variance of Neyman allocation. All
experiments are implemented using Matlab (R2018Db).

5.1 tasting artificial bee colony algorithm to find stratified boundaries.

We test the ABC algorithm and compare it with previous results for the POS algorithm[3
]. Some groups are used for class, central, standard deviation and size. Each population is
divided into 3, 4, 5 and 6 strata . The function uses probability density and is divided into 2, 3,
4, 5 strata.

These populations and function are:

Pop1: The population in thousands of US cities in 1940 (US cities).
Pop2:Central of banks in Iraq(2010)(CBI)

F(x) =2(1-x) «eeee Range  0<x<lI

Table 1: Comparison results for popl and pop 2

ABC PSO H
Vaey Viey
0.891951 0.891952 3
0.472274 0.472761 4
0.264202 0.264204 5
0.194225 0.196972 6
Coepnemt
7.8349¢+06 7.7133e+08 3
3.7039e+06 3.7770e+08 4
2.5576e+06 2.5664e+08 5
1.9558e+06 1.9635e+08 6
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Table 2 : The Comparison results for the probability density functions using four
different strata

ABC PSO L
Strata
Strata
Boundaries Viey Viey
Boundaries
0.3542 3'0150372 0.354 0.0152 2
0.2298 0.229
2.0068784 0.0069 3
0.5026 0.502
0.1703 0.170
0.3606 (5).0039171 0362 (2).0039 4
0.5869 0.587
0.1358 0.135
0.2833 0.282
2.0025363 0.0026 5
0.4480 0.447
0.6432 0.642
CONCLUSIONS

The numerical results emphasize the efficiency and capabilities of ABC algorithm in finding the
Optimal Strata Boundaries. Amazingly, its performance seems better than PSO method This
confirms that ABC can be efficiently utilized in the stratification of heterogeneous populations.
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ABSTRACT

In this paper, fitting structural regression model when both variables are subject to error is considered
using a new estimation procedure. The new estimation procedure is a repetitive procedure extension to
the Wald estimation method. A Monte Carlo experiments are conducted to study the performance of the
new estimators and the results are compared with the classical two-group and three- group estimators in
terms of the mean squared error. Moreover, a real data analysis to study the relationship between the
human development indexand the national gross domestic productis discussed.

Keywords: Error-in-Variables Model; Wald Estimators;Human Development Index.

1. INTRODUCTION

Structural Measurement Error Model (MEM)[14,17] is an extension of the simple linear
regression by assuming dependent and independent variables are measured by error. The
corresponding standard linear MEM [13] assumes that two mathematical variables ¢ and 77 are

related as
n=a+pig
where the variables ¢ and 7] are unobservable and can only be observed with additive errors
as
x=&E+5and y=n+¢&
assuming that the £ and the errors terms, & and ¢, are uncorrelated. For a random sample of
sizen, say (x,,y,;), i = 1,2,....,n; the structural MEM [12] can be formulated as

ni=atpé L i=12,....n
where (1)
X, =§i +5’, ,and Y, =n, +¢&, i:1,2,....,7’l

The main problem in Eq.(1)is to estimate the unknown parameters aandf.Several authors have
discussed a couple of estimation methods to fit the structural MEM.Moreover, there are two
types of estimation methods: parametric and non-parametric.For the parametric estimation
method, the method of choice will be the maximum likelihood estimation method proposed by
Lindley[18]which solves the problem by adding prior assumptions. Madansky [20] wrote a
detailed summary on the problem of fitting a straight line using MLE when both variables are
subject to error. Thompson and Carter [23] introduced an overview of the normal theory
structural measurement error models.Cao et al. [9]have proposed of using an empirical Bayes
approach by considering the EM algorithms to calculate maximum likelihood estimates for the
MEM with or without equation error. Cao et al.[8]have obtained iterative formulas of maximum
likelihood estimations via EM algorithm for the Heteroscedastic MEM.For the non-
parametrictype of estimation method, Wald type estimation methods of the socalled grouping
methodswere proposed by Wald [24]and modified by Nair and Shrivastava[21]. Recently, the
information theory was used byAl-Nasser[2, 3]. Other authors like Al-Nasser [5] and Carroll
[11] have proposed a non-parametric estimatorof a regression function from data that are
impure by a mixture of the two errors (classical and Berkson).Moreover, robust non-parametric
estimation procedures were proposed by Al-Nasser [4,6]and Wiedermann et al.[25]. More
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details about different estimation methods on the MEM context can be found in [1, 7, 10, 15,
16, 19, 22].

In this paper, a new non parametric estimation procedure is proposed and discussed
numerically.This paper is divided into six sections. The second section is designated to review
the classical Wald-type estimation methods. The third section introduces the new idea of an
estimation procedure. The Fourth section presents Monte Carlo experiment to study the
performances of the proposed estimators in fitting the MEM. The fifth section includes a real
data analysis to study the relationships between Human development index (HDI)and the
national gross domestic product (GDP); and the paper ends withthe sixth which presents
concluding remarks.

2. THE CLASSICAL WALD TYPE ESTIMATION METHODS

The idea of the Wald type estimation methods as given by Gillard [15] and Wald[24]
suggests of splitting the observations into two groups namely; "G1 and G2" of the same size
(say m). Such that G1 contains the first half of the ordered observations (X (1), Y (1)), +......... ,
(X m), Y (m))) and G2 contains the second half (X im+1), Y m+1))s cvevvven.. , (X @ Y m))- Then finds
the slope between the central tendency of these groups. To be more clear, the steps of Two-
Group estimation method are:

e Order the data based on X’s values from smallest to largest.
¢ Divide the sample into two equal groups.

e Note: If we have an odd sample size, then remove median.
o Select the associated Y’s values of X’s.

e Compute the average of each sub-group.

e The point estimators aregiven in Eq.(2) and Eq.(3):

5 _Y62—Ye1
= 2
g fc;z—fm( )
a=y-px(3)
Wherey,, = sample mean for y values in G2; y;; = sample mean for y values in G1.X5,=
sample mean for x values in G2.; X;1= sample mean for x values in G1.An extension of the
two group procedure was proposed by Bartlett [7] and Nair and Shrivastava [21], by

suggesting of splitting the observations into three equally sub-groups, "G1, G2 and G3"; and
discard the middle group from the analysis.

3. THE PROPOSED ESTIMATION METHOD

The proposed estimation method is an extension of the classical Wald type procedure. It is
a repetitive procedure depend on sorting the observed pairs (x,,y,)’s, i =1, 2,....,n; by the
extent of x,’s, then split the observation into several groups (say, r) of the same size and then

find all possible paired slopes. The procedure can be described as follows:
e Order the x’s data from smallest to largest and take the associated y’s valued
¢ Divide the data into -subgroups each of size k; where r < [%]

e Compute the central tendency measure for each subgroup,
e Define the jth slope as follows:

Bj= Ynj~mj J=1,2, .. ,(;), nm=1, 2, ........ r,andm<n

Xnj—Xmj

e The final estimators estimator will be as given in Eq.(4)
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B= 3B and a=y-pz
2

4. MONTE CARLO EXPERIMENT

To study the performance of the proposed methods, two random samples were studied inlier
and outlier samples based on a 10000 random samples each of size n that generated from the
standard normalMEMas given in Eq.(1); under the following assumptions:

(1) The parameter initial values are (@ =0, p = 1, 6*=1, cZ=1and G§=1)

(2) Three different sample sizes are considered; » = 10, 50 and 100.

(3) For the Proposed procedure, the sample suggested to be divided into r = 3, 4 samples.

(4) For the outlier case, the data was contaminated; at each step a certain percentage (10%) of
the observations were deleted and replaced with outliers’ observations. The contaminated
data point was generated according to the given relationship where:

(i) Iny only outliers (¢; - N(O, Gg) )’cg =16.
(i) In x only outliers ( §; . N(0,63), 6§ = 16.
(iii) In both x and y outliers (c2,6%) = (16, 16).

The performances of these estimators were measured by using the simulated bias and mean
square error:

10000( . ). MSE 1 10000
_10000;”"_” _100002

Where /1. is the estimates given by one of the proposed estimators for the i sample.The Monte

Bias (&, — p)’

Carlo experiment results are given in Table.1 for inliers cases; however, Table 2 Table 3 and
Table 4 for outlier in x only, outlier in y only, outliers in both x and y, respectively. The
simulated results indicated that, the classical Wald type estimation procedure is better than the
proposed procedure when the sample size is small ( n = 10). Then as increasing the sample size
the proposed procedure robustify the classical Wald type procedure in terms of the Bias and the
MSE for both parameters.

Table 1: Bias and MSE for @ and ﬁ: Inlier case.

Estimation Methods

n Parameter  Statistic Repetitive Repetitive
Two group Three group PtV petiv

r=3 r=4
@ Bias 0.0051 -0.0055 0.4253 -0.0146
10 MSE 0.01821 0.02888 0.05473 0.02865
. Bias -0.4969 -0.5005 -0.4783 -0.4852
b MSE 0.04167 0.04085 0.04278 0.06391
P Bias 0.0026 0.0067 0.4847 0.0027
50 MSE 0.00061 0.00098 0.00575 0.00065
« Bias -0.499 -0.4979 -0.4937 -0.5002
b MSE 0.0055 0.00538 0.00531 0.00545
@ Bias 0.0015 -0.0006 0.4951 0.0003
100 MSE 0.00015 0.00024 0.00271 0.00015
A Bias -0.4996 -0.4997 -0.4978 -0.4997
b MSE 0.00262 0.002599 0.002577 0.002597

Table 2: Bias and MSE for & and §: outlier in x.

Estimation Methods

Y n  Estimate Statistic Repetiti p—
° Two group  Three group epetitive epetitive

r=3 r=4
16 10 N Bias -0.0086 -0.002 0.6636 0.0014
@ MSE 0.02864 0.05082 0.11561 0.14237
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R Bias -0.7539 -0.7753 -0.7099 -0.6876
F MSE  0.06365 0.0666 0.06218 0.07263
& Bias -0.0003 -0.0023 0.5743 0.0046
50 MSE  0.00089 0.00158 0.00792 0.00098
A Bias -0.5878 -0.5971 -0.5826 -0.5762
b MSE 0.00733 0.00749 0.00717 0.00704
& Bias 0.0005 0.0013 0.5451 -0.0014
100 MSE  0.0002 0.00033 0.00327 0.0002
A Bias -0.5506 -0.5526 -0.5503 -0.5464
F MSE 0.003144 0.003149 0.003122 0.003082
Table 3: Bias and MSE for & and 8: outlier in y.
Estimation Methods
o’ n  Estimate Statistic Two group  Three group Refe_ti;ive Refeiti;ive
P Bias -0.0022 0.0104 0.4447 -0.0035
10 MSE 0.33157 0.56598 0.97914 0.64681
o Bias -0.5219 -0.5041 -0.5027 -0.5146
F MSE 0.3338 0.33399 0.42493 0.89781
P Bias 0.005 0.0045 0.4968 0.0042
16 50 MSE 0.00273 0.00443 0.0119 0.00286
o Bias -0.5065 -0.5041 -0.5016 -0.5037
F MSE 0.00731 0.00701 0.00719 0.00707
P Bias 0.0014 0.0008 0.4898 -0.0026
100 MSE 0.00041 0.00061 0.00333 0.00042
5 Bias -0.5008 -0.4995 -0.4979 -0.4961
F MSE 0.002831 0.002764 0.002768 0.002731
Table 4: Bias and MSE for & and £ outlier in both (x, y).
Estimation Methods
(6%,062) n  Estimate Statistic Two group Three group Refe_ti;ive Reffiti‘t‘ive
P Bias -0.0159 -0.0106 0.6588 -0.0131
10 MSE 0.12335 0.25809 0.36305 0.41058
5 Bias -0.7459 -0.7684 -0.715 -0.6691
p MSE 0.1585 0.19088 0.17847 0.26748
@ Bias 0.0055 0.0037 0.5793 -0.0009
(16,16) 50 MSE 0.00239 0.00485 0.01102 0.00264
’ 5 Bias -0.5885 -0.5959 -0.5911 -0.5748
p MSE 0.00856 0.00893 0.00861 0.00819
@ Bias 0.001 0.0045 0.5447 0.0034
100 MSE 0.00041 0.00077 0.00366 0.00041
5 Bias -0.5509 -0.5526 -0.5472 -0.5476
F MSE 0.003312 0.003345 0.003266 0.003257
5. REAL DATA ANALYSIS

The real data analysis in this article seeks to determine the impact of GDP on HDI in
Jordanwithin the period (1990-2017). The trend of both variables within the study period are
given in Figure.1 and Figure 2.

a
T

0.8
0.7
0.6
0.5

||
O - AN MO IOV ONMNOVDDO - ANMITITWOLONNOOD O T—ANMT LW O N~
DD OO0 O0O0O0O0O0O0O0 ™ T« «©™ ™ ©™ v« v
CNoNoNoNoNoNoNoNoN o NeNoNoNoleNoloNoloNeNoloeNololNollolNolNol
TT T T T T T T T s AN AN NN NN NN NN NN NNNNNN

185

Figure.1 The trend of the Jordanian HDI within 1990-2017




a 4,000 —
O 2,000 |"
o CTTTTTTTITITTIITI]]]

O A MTUOVONOVDHODOTTANMNMTUWLWONOVDODOTTANMITLW O~

[oNoNoONoNoONoNONONONoNelNeolelolNoelollolNollo ol il sl i i i sl

[oNOoNONONoONoNoONoNoNoNeoNeoNoNoNoNoNoNoloNoNololoNoNoNoNeNe)

T T T s s AN ANANANANNNANANANANANANNANNANAN

Figure.2 The trend of the National GDP within 1990-2017

Moreover, Table 5. representsthe descriptive statistics of both variables in general. It is worth
to say that there is a strong positive significant correlation (r = 0.761, p < 0.001) between GDP

and HDI in Jordan.
Table 5: Descriptive Statistics

Variable Min Max Mean STDEV Correlation P.
GDP 1158 4130 2476.82 1120.867
HDI .617 736 70514 .034164 0.761 <0.001

Moreover, the scatter plot (Figure 3) suggest the type of the relationships to be (almost linear).

et = =S L

L

Figure.3 The scatter plot of HDI and GDP

Therefore, GDP and HDI can be modeled as a linear relationship, however, we believe that
both variables are measured subject to error since the final value for each of these variables
depends on several sub-factor. Hence, the MEM is the best model to be used to study the
relationship between HDI and GDP which can be rewritten as

HDI=a + B x (GDP - 9) + €.
Accordingly, Table 6, shows the results of all estimation methods considered in this article.
The results indicated the proposed method with r =3 and the three-group methods gave more
accurate estimators than the other estimation methods as can be seen in Figure 4.

Table 6: Parameter Estimation of HDI vs GDP

Method criterion 4 a
Classical Two-Group 3.76E+4 -2.40E+4
A1 Three-Group 2.92E+4 1.81E+4
r=3 6.11E+4 -4.06E+4
Proposed =4 7 13E+4 -4.78E+4
1.00E+04
——2G-Res
5.00E+03 3G-Res
0.00E400 |+ s e R e e S r3-Res
1.3 5 7 9 11 13 15 17 19 21 23 25 27 r4-Res
-5.00E+03

Figure 4 Residual Comparisons of the estimation methods
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CONCLUDING REMARKS

This study proposed a new non-parametric estimation procedure to fit the structural MEM.
The new procedure used repetitive Wald type estimation method. The Monte Carlo simulations
provide a good evidence for the superiority of the proposed estimation procedure on the
classical methods in cases of the data moderate or large sample size. Moreover, the estimation
procedure applied on a real data to study the effect of the GDP on the HDI. The data analysis
suggested that there is a strong positive relationship between both variables. Future work will
be about finding the optimal » value in the proposed procedure.
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ABSTRACT

The objective of the paper is to introduce certain fractional integral formulas of (p-k)-Mittag-
Leffer Function by using the generalized fractional integral operators (the Marchichev-Saigo-
Maeda operators). Further integral formulas are also obtained involving Saigo and Riemann-
Lioville integral operators as their special cases.

Keywords: (p-k) Pochhemmer symbol; Fractional Kinetic Equation; (p-k)-Mittag-Leffer
Function; Laplace Transform.

1. INTRODUCTION AND PRELIMINARIES
Gehlot in [1] presented the following two parameter Pochhammer symbol defined as:
Definition 1. Letw €C;p,k cR"—0;n ¢ N;E)‘{(w ) >0, then (p-k) Pochhammer

symbol is defined as:
(Y2 (M w2 M (o) p | = 2 O )
p(w)n,k—(kj(k +pj(k +2p) (k +(n l)pJ— o) (L.1)

Gehlot in [1] introduced the two parameter gamma function defined as:

Definition 2.Let w e C\kZ ;p,k cR" -0;n € N;%(w ) >0, then (p-k) Gamma

function is defined as:

© tk

e w)=fe rear (1.2)

0

Recently in [2], Gehlot introduced the (p-k) Mittag-Leffler function defined as:

Definition 3.Let p.k e R"-0,£,{,7€C\ kZ’;iR(f) > 0,9‘{(4’) > O,%(T) >0 and
qe (O,I)UN , then (p-k) Mitag-Leffler function is defined as:

7.9 _ - p(T)nq,k Z”
pEk,f,C (Z)—;m nl (13)

where  (7),,, 18 two parameter Pochhammer symbol defined in equation

(1.1).Following lemmas are required for our present study as follows:
Lemma 1.For the (p-k) Pochhammer symbol and the k -Pochhammer symbol and the
classical Pchhammer symbol it has
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L), =(§] ), 4 =p"(%] . (14

Lemma 2.For the (p-k) Gamma function, the k -Gamma function and the classical
Gamma function it has [1]

(2] -2 s

2. THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS
The generalized fractional calculus operators (the Marchichev-Saigo-Maeda operators),
involving the Appell’s function or the Horn’s F; () function in the kernel are defined

as (see for details, Marichev [5], [9, 10, 11], Saigo and Maeda [8]).

Definition 4.Let 6,6',v,v',neC and x >0, then for 9‘{(77) >0, then

5,0 v, v\ 0 n—1,-5" ' , t
(182771 Y(x )= lf(n)l(x —t)"'t 61:3(5,5 VSV ;77;1—;,1—);—)/ (¢)dr (2.1)

and
55 RSN/} X o n-1,-8 ' . X {
( f)( ) F(U)J.(t _x) ! E(asaavavanal_t_al_;y (t)dt,(ZZ)

provided the integrals in equation (2.1) and (2.3) exist.
In equation (2.1) and (2.3), F;, () denotes Appell’s hypergeometric function [16] in two

variables defined as:

o) (o'
F(55 VV,T], ’y) ZO/( )m((;;(v) (V) ):n'%

b <1).(2.3)

max{|x ,

The above fractional integral operators in equation (2.1) and (2.3) can be written as
follows:

(15;521/"/27]]()(36):[%) ([55 v+kvr]+k )(x)
(R(n)<0:k =[-(n)+1])

(2.4)

and
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d

([f’,i',vy,nf )(x ) _ (_Ejk ([f”i'amv#k,?ﬂkf )(x )

(R(n) <0k =[-R(n)+1]).

(2.5)

The following formulas are required for our present study as given in the following
lemma [8, 9, 13].

Lemma 3. Let 6,0',v,v',n and peC,x >0 be such that 9%(77) >0, then

(151 (x ) = L(p)T(ptn=0-6"v)[(p+v'=6") s
0 L(p+v)T(p+n—06-8"\T(p+n—5'-v) (2.6)

R(p)>max{0,R(5+5+v—n).R(5'-v")})

and
(]f’o‘z"v’vv"’t"‘l)(x)= I(1-p—v)I(1-p—n+5+6 ) (1-p-n+5+v")
’ I(1-p)T(1-p-n+6+5+v)I(1-p+5—v)
R(p)<1+min{R(—v),R(5+5'-n),R(5+v'-n)}).

p+n—6-0'-1

2.7)

The Hadamard product (or the convolution) of two analytic functions is very useful in
the present work. Let

¢(z ) = i&nz " mm (|Z ‘ <R,)(2.8)
and "
z//(z ) = iﬂnz " mm (‘z | <R,)(2.9)
be two power series. Thglo, their Hadamard product is the power series defined by

€]

(#*w)(z)=>8,b,2" =(v #)(z)8mm(z|<R)(2.10)

n=0
=[lim a Mﬁm b
n—o n-»|h

an +1 n+l

where

ab

n_n n n

R =1lim

n—w

a

J:R¢.RW,(2.11)

n+1""n+l1

thus, we have R >R, R, [4, 7] (see also [15, 14] and the references cited therein).

Fox-Wright function ¥, (z ) ( p-q ENO) with p numerator and ¢ denominator

parameters defined for a,....,a, € C and b,,....b, e C\Z, by (see [3, 6, 12, 16])

190



(a,),

...,(ap,ap); 2
p\Pq Z = Z’
(61,2 (b, B, ); =

where the coefficients QAyses @y s Prsees By € R are such that

1433, -Sa, > (2.13)
j=1 i=1

3. FRACTIONAL INTEGRATION OF (P-K)- MITTAG-LEFFLER FUNCTION

In this section, we present certain fractional integral formulas involving (p-k)-Mittag-

Leffler function £ M Zg ;( ) by using the generalized fractional integral operators (the

Marchichev- Salgo -Maeda operators).

Theorem 1. Let x >0,0,0',v,v',n,peC and
p.k eR*—O;f,g',re(C\ka;%(gf)>0,9%(§)>0,9%(T)>0 and g E(O,I)UN be
such that R(1)>0 and R (p+wn)>max {0,9%(5+5'+v—77),9%(5'—v')} then the

following fractional integral formula holds true:

(ﬁ5W%ﬁ1EW(ﬂ»%Q P g x EJ (7))

k.£.&
(p.0).(p+n—-5-8"v.0).(p+v'-5"); ) G.1)
(p+V"w)’(p+77_6_5'960)3(10-"77_5'—\/,0)); ak

Proof. Denote the left hand side of equation (3.1) by Z .Then using the definition (1.3)
and interchanging the order of integration and summation, we have

(T)nqk 1 5,6 v.v'in, pron-1
_Z n§+§)n|([01 ! )(x) (3-2)

applying the result (2.11), equation (3.2) reduces to

_ i NG pron+7—-6-5'-1
5 ka (n§+§’) n!
I'(p+on)l(p+on+n—6-6-v)I[(p+on+v'-5')
I(p+on+v T (p+on+n-56-5"\(p+on+n-5'-v)

(3.3)

after little simplification, the above equation (3.3) reduces to
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sl (7)1
I:prrr]é'()l $X
Zo: i (né+0)

L(p+on)T(p+n—-6-6'-v+on)(p+v'—S'+aon) x
T(p+v'+on)T(p+n-6-5+on)T(p+n—35'-v+on) n!’

(3.4)

Using equation (2.19), in view of (1.3) and (2.21), equation (3.4) gives the required
result (3.1).

Theorem 2 Let x >0,6,6',v,v',n,peC and p,k eR" —-0,£,{, 7€ C\kZ
%(§)>O, 9%(4’)>0,9%(r)>0and q E(O,I)UN be such that 9‘{(77)>0 and
R(p—wn)<l+min {%(—v),%(é‘+5'—77),9‘{(5+v'—77)} then the following

fractional integral formula holds true:

- 1 . 1
5.0 v.v'n p-1 7,9 - _ .. ptn-6-5'-1 7.9 %
(Ix,oo {t pEk,§>C(twj}J(x)_‘x PEk,f,C(ij

v (I-p-v,0),(1-p-n+5+5'0),(1-p-n+5+v',0); 1
23 (1-p,0),(1-p-n+6+5+v,0),(1-p+5-v,0); x|

Proof. Proof of Theorem 2 is similar to that of Theorem 1.

3.1 Special Cases

Here we present some special cases by choosing suitable values of the parameters o,
o',v,v'and n.If weput 6=6+v,0'=v'=0,v=—n,7=75 in Theorems 1 and 2,
we get certain interesting results concerning the Saigo fractional integral operators
given by the following corollaries.

Corollary 1 Let x >0,5,v,n,peC and p,k eR" -0,&,{, 7€ (C\kZ’;%@) >0,

9‘{(4’) > 0,9‘{(2') >0and q € (O,I)UN be such that 9‘{(5) >0 and
R(p+awn)>max {0, R(v- 77)} then the following fractional integral formula holds

true:

v, — 7, 4] —v— 7.4 4] ,0,(0 ’ p+77—V,a) ’ 4]
T | e A (p+f7+;w)'
(3.6)

Corollary 2 Let x >0,0,v.n,peC and p,k eR" —O;§,§,TEC\kZ_;9‘{(§)>O,
%(§)>O,?ﬁ(r)>0 and ¢ E(O,I)UN be such that (5)> and
R(p—wn)<l+min {9‘{(1/),9%(77)} then the following fractional integral formula
holds true:
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) 1 " 1 (1-p+v,0),(1-p+n,0); 1
[80 et pra | — =x""EM | — %9, —
X, {t V4 k>§>:(tﬂ)]} (X) X )4 km((xm] 272 (l—p,a)),(l—p+5+v+77,a)); x©

(3.7)

CONCLUSION

All the finding in this paper are general in nature. Various results as special cases can
be easily obtained by employing the particular values to the parameters involving in
our findings.
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ABSTRACT

In this paper, a mathematical model, consists from a prey-predator system with stagestructure
in the presence of harvesting and toxicity has been proposed and studied by using the
classicLotka-Volterra type of functional response. The existence, uniqueness and boundedness
of the solution of the proposed model are discussed. The existence and the stability analyses of
all possible equilibrium points are studied. The global stability of these equilibrium points are
performed with suitableLyapunov functions. Finally, numerical simulations are carried out not
only to confirm the theoreticalresults obtained, but alsoto show the effects of variation of each
parameter on the proposed model.

Keywords: Prey-predator, functional response, stability analysis, Lyapunove function. 1

1. INTRODUCTION

The prey-predator system is one of the most important topics in the ecosystem. It is used to solved
many complex problems or which cannot be predicted with on the ground and thus is considered an
alternative method in improving our knowledge of the physical and biologicalprocessesrelated to
the environment.One of the most serious problems that threaten the ecosystem is over-harvesting of
living things, because of the massive population increase and the desire of people to get more
resources, that led to the danger to the ecosystem and has become a problem that worries alot.
Several models were proposed according to harvest models [3,6,7,18,23]. While many researchers
have tried to limit this problem by suggesting a model containing a refuge to save prey from
extinction due to over-harvesting, and predation for example [1,13,24]. On the other hand, the age
factor has a significant impact on the rate of growth and reproduction, in recent years, many prey-
predator models based on age-structureare studied byauthors [4,8,15]. The other major problem
affecting the ecosystem is pollution caused by toxic substances, many studies have considered on
the environmental effects of toxic substances, Hallam and Clark [22] they studied the effects of
toxic substances on exposed populations. In addition, Hallam and De Luna [21] have discussed the
effects of a toxin through the food chain of the population. While Friedman and Shukla [10]
developed the Models of predator-prey systems in a polluted closed environment with singlespecies.
Chattopadhyay [12] studied the effects of toxic substances on two competing species and noted that
the toxic substances have some stabilizing effect on keep the system.Mortoja et al. [17] considered
two types of factors such as anti-predator behavior and group defense of stage-structure model.
There is no doubt that the presence of toxicity will affect the harvest, some studies that focused on
the existence of harvest and toxic substance [5,9,11,14,16,19,20]. Finally,Majeed [2] suggests
model contains stage structures in both populations with the effect of toxicant. In this paper, the
stage-structured of prey-predator model with harvesting and toxicity has been proposed and studied.
The considered model consists of four nonlinear ordinary differential equations to describethe
interactions by using Lotka-Volterra type of functional response.This system is analyzed by using
the linear stability analyses to find the conditionsfor which the feasible equilibrium points are stable.
Global stability conditions for proposed model are described by using appropriate Lyapunove
functions.

* Corresponding author. Moayed H. Ismaeel, Tel: 009647902568802
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2. MODEL FORMULATION

In this section, the model consists of two species prey andpredator, each species divided into two
classes: one is immature and other is mature, which are denoted to their population's sizes at time
Tby X(T), Y(T), Z(T)and W(T) respectively. Now, in order to formulate the dynamics of such
system, the following assumptions are considered:
The immature of prey and predator grown up to be mature with grown up ratesn,
andn,respectively. The immature prey depends completely in its feeding on mature prey that
growth logistically with an intrinsic growth rate r and carrying capacityk > 0 in absence
ofmaturepredator. Also the immature predator depends completely in its feeding on mature predator
thatconsumes the immature andmature prey with the classicalLotka-Volterra functional response
with consumption rates 8; and@,, respectively, therefore the predatorspecies growth due to attack
by mature predator on immature and mature prey with conversion rates 0 < e¢; < land 0 < e, <
1. However, in absence of prey species the predatorspeciesdecay exponentially with the
mortalityrates y;andy,of immatureand mature predator respectively. Moreover, the
immaturepredator can't attack any of the preys, rather than that it depends completely on his parents,
so that it feeds on the portion of up taken food by maturepredator from the first andsecond preys
with portion rates 0 <n; <1 and 0 < n, < lrespectively. Finally, ¢;andé;i=1,2,3,4 arethe
catchabilitycoefficients and the toxicity coefficients of prey species andpredator species
respectively. According above assumptions, the model is formulated as follows:
dX Y
= Y(l —E)—an—SlXZ — X — 0, XW

dr

dy .

ﬁ == an - 52Y - (sz - 02YW

dzZ

ﬁ = n16191XW + nzezezyw - lez - 532 - (p3Z - y1Z

rra =1,Z+ (1 —ny)e 0, XW + (1 —ny)e,0,YW — §,W — o, W — y, W

In order to simplify the system, the number of parameters is reduced by using the
following dimensionlessvariables and parameters:

_ _X _Y _Z _W _T]i _Gik _)/l' _(,Dj

t=1T, x—K,y—k,z—K,W—k,ai—r,ﬁi—r,di—r, hj—r:
5 k nieiGik (1 - ni)eieik i .

uj = ” —, Bit2 = o ita = f, where i = 1,2and j = 1,2,3,4

Then dimensional system (1) becomes:
dx y(1-y)
x [—_ (@ +hy) —usx — ﬁlW] =xf1(x,y,2,w)
X
= [L —uy = hy = fow| = Y53, 2,w) = ¥fo (6,2, w)
B3xw ﬁ4yW

dw
=W 7+/35x +Bey = (us + hy +d)| = whi(xy,2,w)

— (@ +us + hy + )| = 2 (x5, 2,w)

Obviously the interaction functions of the system (2) arecontinuous and havecontinuous
partialderivatives on the following positive four dimensional space:

Ri={(x,y,zw)€R*:x(0)=0,y(0)=0,2z(0)=0,w(0) >0}

Therefore, these functions are Lipschitzian on R¥ , and hence the existence anduniqueness of the
solution for system(2). Further, all the solutions of system (2) with non-negative initialconditions
are uniformly bounded as shown in the followingtheorem.

Theorem 1:4/ the solutions of system (2)are uniformly bounded.

Proof. let (x(t),y(t),z(t),w(t)) be any solution of the system (2) with(xo, ¥o, Zo, Wwo) € R%.
Nowconsider a function: V(t) = x(t) + y(t) + z(t) + w(t), and then take the time derivative
offunction: V(t) alonge the solution of the system (2), So, due to the fact that theconversion rate
constant from immature andmature prey population tomature and immature predator population
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cannot exceeding the maximumpredationrate constant from mature predator population to
immature and mature prey population, hence from the biological point of view, always [; > 3 +
Bs and B > By + P, we get:

dv

1
So, I +SV < 7 where S =min{hy, hy, (us + hsy +dy), (uy + hy +dy)}

Now by solving this dlfferential inequality for the initial value V(0) =V, , we get:

0<V() < 4—15 ,V t > 0. Hence all the solutions of system (2) are uniformlybounded .]

3. THE EXISTENCE OF EQUILIBRIUM POINTS

In this section, the existence of all possible equilibrium points of system (2)is discussed. It is
observed that, system (2) has at most three nonnegative equilibrium pointswhich are in
thefollowing:

e The equilibrium point E, = (0,0,0,0) always exists.

e The equilibrium point E; = (%,,0,0), exists uniquely in Int. RZ if the following condition

hold:
ay
(Zl + h1 < o (3)
h;

e Finally the positiveequilibrium pomt E, = (;c 3*/, ;, VTI) , exists if the following condition hold:

LS y (uzy + hz) @
a

4. THE STABILITY ANALYSIS

In this section the local stabilityanalysis of system (2) around each of the above equilibrium points

is discussed through computing the Jacobianmatrix/ (x, y, z, w) of system (2):

e The characteristicpolynomial of the Jacobian matrix of system(2)at E,, J, = J(E,)gives the
four eigenvalues of ], with negative real parts provided that the following condition holds:

h, > 1. (5)
Then E, is locally asymptotically stable in R}, under the condition (5) . However, it is a saddle
point (unstable) otherwise.

e The characteristicpolynomial of the Jacobian matrix of system(2)at E;,J; =J(E;) gives the
four eigenvalues of J; with negative real parts due to the following conditions:

1
(ug + hy +dy) > (BsX + Bs¥). (7)
(ay +uz+hs + d1)((u4 + hy +dy) — (BsX + 3637)) > ay(B3X + B,5)- (8)

Hence, E; is locally asymptotically stable in Rfunder the conditions(6-8). However, it is a
saddle (unstable) point otherwise.

¢ Finally, then the characteristicequation of the Jacobian matrix of system(2)at E,, J, is given by:

[A*+ A3+ 4,22+ A; A+ A,] =0, where(9)
Ay = —(cq1 +Cyp 33 +C4q) > 0.
Ay = C33C44 — C34C43 + (€11 + C22) + (€33 + C44) + €112 — C12C21 — C24Caz + C14C4y.
Az = —(c11 * €22)(€33C44 — C34C43) — (C33 + Caa) (C11C22 — €12C21) + (€11 + €33) (€24C42)
— (€12€24C41 F €21C42) + €14C41(Cap + C33) — (€24C32C43 + €14C31Ca3)-
Ay = (C33C4a — €34€43)(C11Co2 — C12C21) = €11C24C33C42 + €33(C12C24C41 + C21Ca3)
— (€22€33)(€14€41) + €11(€24C32Ca3 + €14C31Ca3)
— (43 (012024031 + C14021C32) .
where, ¢;; = —(0(1 + hy) — 2u1x ﬁlw Cip=1-— Zy, c13 =0, C1q = —[f1x,

C21 = 1,023 = —Zuzy hy — :BZW C23=0, cu= _ﬁzy’ C31 = ﬁsW
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2= Baw, ¢33 = —(Ciz tus+ hs +dy), ¢34 = ,83;5 + B4y, Car = Bsw,
Caz2 = BeW, Ca3 = A, Caq = Psx + Pey — (uy + hy + dy).
Now by using Routh-Hawirtizcriterion equation (9) has roots (eigenvalues) with negative real
parts if and only ifd; >0, i = 1,3,4 andA = (4,4, — A3)A; — A?A, > 0. Clearly, 4; >0
provided that:

1

y > 5 (10)
(s + by + d3) > Bsx + fey. (11)
(az +uy +hy +dy) <(u4 +hy +dy) — ,85;5 + 363*’-) > a3 (,33;5 + 34)*’)- (12)
(1- 2§*) (ﬁzﬁ*) B _ . < (1- 2{) (ﬁsz*) Bsw a3
(.3195) (,84W) (ﬁ1x) (:BGW)

Hence, A will be positive if in addition of conditions (10-14).Therefore, all the eigenvalues
of J, have negative real parts under the given conditions and henceE’, is locallyasymptotically
stable. However, it is unstable otherwise.

5. GLOBAL STABILITY ANALYSIS

In this section the globalstabilityanalysis for the equilibrium points which are locally
asymptotically stable of system (2) is studied analytically with the help of Lyapunov method we
get:

e Assume that E, = (0,0,0,0) is locallyasymptoticallystable inR%. Then E, is globally
asymptoticallystable on the regionw, € R}, where wo = {(x,y,z,w) ER% : y > 1}

e Assume that E; = (%,7,0,0)is a locallyasymptoticallystable in R}. Then E; is a globally
asymptotically stable on the region w; € R%, that satisfies the following conditions:

y>yi (14)

1-y—-v) o —y2
(o=, w)., J(ul 0220, ) s

e Assume that E, = (52, 3*1, 2, VT/)Of system (2)is locally asymptoticallystable in theR%. ThenE; is
a globallyasymptoticallystable on any regionw, C R%, that satisfies the following conditions:

y>y? (16)
o, e). [ ) )
X y XX yy
1 — 2
(B = Fs) < Ji <u1 + %) (j‘vzj ) (18)
(B2 = Be) < j% (uz + ﬁ) <“Zf>. (19)
yy ) \ww
Z< 2 <M> <a2f). (20)
w ZZ ww

6. NUMERICAL ANALYSIS OF SYSTEM
In this section, the dynamical behavior of system (2) is studied numerically for one set

of parameters and different sets of initial points. The objectives of this study are: first investigate
the effect of varying the value of each parameter on the dynamical behavior of system (2) and
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second confirm our obtainedanalyticalresults. It is observed that, for the following
set of hypothetical parameters that satisfiesstabilityconditions of the positiveequilibrium point,
system (2) has a globally asymptotically
stable positive equilibrium point .

a; = 05,02, uj = hj = di = 01, ﬂj+2 = 03, ﬂi = 06, i= 1,2 andj

=1234 (21)

Further, withvarying one parameter each time, it isobserved that varying the parametersvalues,d; ,
az,u;,h;, i =13andB;, j =1,2,3,4,5. , do not have any effect on the dynamicalbehavior of
system (2) and the solution of the system stillapproaches to positiveequilibrium point E, =
(x, v, 2, 1;/) By varyinga; in the range0.001 < a4 < 0.01, causesextinction of all species and the

solution of system (2) approaches asymptotically to E,, as shown in Fig.(1)a, for typicalvaluea,; =
0.005, while the increasing of this parameterin the range0.01 < a; < 0.023 the solution of system
(2) approachesasymptotically to E; = (%,%,0,0) in the int. of R%,as shown in Fig.(1) b, for
typicalvaluea; = 0.02, further increasing this parameter further in the range0.023 < a; < 1the
solution of system (2)approachesasymptotically to the equilibrium point in the int. of R%, as shown
in Fig.(1)c, for typical value a; = 0.1.

b)
(@ o

Populations

Tim Time

Fig. (1): (@) Timeseries of the solution of system (2) for the data given by (22) with ; = 0.005 , whichapproaches
toEg = (0,0,0,0) , (b): Time series of thesolution of system (2) for the data given by (22)withay = 0.02,
whichapproaches to E; = (0.477,0.088,0,0), (c): Time series of the solution of system (2 ) for the data given by
(21) with oy = 0.1, whichapproaches toE, = (0.493,0.222,0.072,0.168) in the int. of R%.

Varying the parameterh, , and keeping the rest of parameters as data given in(21) in the
range0.01 < h, < 0.484, it observed that the solution of system (2)approachesasymptotically to
E, . However, increasing this parameter in the range0.484 < h, < 0.85causesextinction in the
predatorspecies and the solution of system (2)approachesasymptotically to E; = (X,%,0,0 ) in the
int. of R%,then increasing in the range0.85 < h, < lcausesextinction in all species and the
solution of system (2)approachesasymptotically to E, = (0,0,0,0).The effect of Varying the
parameteru, , with 0.01 < u, < 1.226and keeping the rest of parameters as data given in(21), it
is observed that the solution of system(2)stillapproaches asymptotically to E,, while the increasing
of this parameter for 1.226<u, <2 leads that the solution of system
( 2)approachesasymptotically to E;. Moreover, [ keeping the rest of parametersvalues as data
given in (21) with 0.01 < S, < 0.106 the solution of system
(2)approachesasymptoticallyE; ,while the increasing of this parameter for 0.106 < B, < 0.3 leads
that the solution of system (2)approachesasymptoticallyE,. Finally, the parametersu,, h, and d,,
have the same effect on the behavior of solution of system (2) and keeping the rest of parameters
as data given in (21) in the range0.01 < u, < 0.251, it is observed that the solution of
system(2)stillapproachesasymptotically to E,, while the increasing of this parameter for 0.251 <
uy < 1 leads that the solution of system (2)approachesasymptotically to E;.

CONCLUSIONS AND DISCUSSION

In this paper, we proposedand analyzed an ecological model that described the dynamical behavior
of the stage-structured of prey-predator in both species with harvesting and toxicity. The
modelincluded four non-linear autonomous differentialequations that describe the dynamics of four
differentpopulation, namely first immatureprey (x), mature prey (y), immaturepredator(z)
and maturepredator(w). The boundedness of system (2) has been discussed. The
existenceconditions of all possible equilibrium points are obtain. The local as well as
global stabilityanalyses of these points are carried out. Finally, numerical simulation is used to
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specify the control set of parameters that affect the dynamics of the system and confirm our
obtained analyticalresults. Therefore system (2) has been solved numerically for different sets
of'initial points and a set of parametersstarting with the hypothetical set of data given by eq. (21)
and the following observations are obtained . The system within the set of parametersimposed does
not have a periodicsolution. For the sethypothetical parametersvalue given in (21), the system (2)
approachesasymptotically to globally stablepositive point E, = (0.292,0.422,0.146,0.341).
Further, withvarying one parameter each time, it is observed that varying the parametersvalues, d;
, AU hy, 1= 1,3and,8j, j =1,2,3,4,5. do not have any effect on the dynamical behavior of

system (2) and the solution of the system still approachesE, = (;, 3*1, ;,VT/) The parametersa; and

h, have a bifurcation with two values0.02, 0.1, 0.484 and 0.85 respectively. Finally, the
parametersu,, 8, Uy , hy and d,have a bifurcation with values 1.226 , 0.106 and u, = h, = d,=
0.251 respectively.
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ABSTRACT

In this paper, we investigate the properties of the exponentiated g-exponential distribution.
The distribution has been compared with the gq-exponential distribution in terms of the moment
measures, distribution measures, survival function and failure rate function. Also, the maximum
likelihood estimators of the unknown parameters in both distributions have been investigated.
Finally, a real time to event data analysis is discussed.

Keywords: Exponentiated Family, hazard function, Survival Analysis.

1. INTRODUCTION

The g-Exponential distribution (QED) introduced in [9] by maximizing the Tsallis
entropy with respect to a moment constraints. This proposal enables the development of
statistical distributions used as an alternative to the classical exponential distribution in
fitting growth or time to event data. Moreover, The QED is a generalization of some lifetime
distribution such as Lomax distribution, and it is a particular case of the generalized type 11
Pareto distribution [2]. The QED probability density function f{x) of some variable Xis
defined as [13]:

(0,0)for1 <q
f(,4q) = (2 —q)Aey(—Ax); wherex € I (D

1
o7 rora <1

1
Where; e4(x) = { A+A-gx)=a; if q#1 giventhatq<2and 1> 0.
e* ; if q=1

Also, the cumulative distribution function cdf of QED is
2—_q
F(x,2,q) =1—[1+ (g — DAx]~a @)

Since the last few decades, generalized models are more useful in biostatistics and other fields
such as medical, health, and reliability analysis. These generalizations include the idea of
exponentiated distribution which introduced by [10] who discussed a new family of
distributions termed as an exponentiated exponential distribution. [4] studied beta
exponentiated Weibull distribution. [5] Discussed the exponentiated moment exponential
distribution and generalized exponentiated moment exponential distribution among others.
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2. EXPONENTIATED Q-EXPONENTIAL DISTRIBUTION

The idea of exponentiated distribution was introduced by [3]who discussed a new family of
distributions they observed that many properties of the new family [8], and a number of authors
have developed various category of these distributions, The Exponentiated Exponential
distribution proposed by [3], however, [12] introduced the Exponentiated Weibull distribution
and in a similar way, [14] proposed the exponentiated gamma and exponentiated Frechet and
exponentiated Gumbel distributions [11].

The exponentiated exponential distribution is generalization of the standard exponential
distribution,the family has two parameters (scale and shape), such an addition of parameters
makes the resulting distribution richer and more flexible for modeling data, [7] added positive
parameter to a general of survival function.

Assume that T is a continuous random variable with probability density function (pdf) g(z)
and cumulative distribution function (cdf) G(?), then the exponentiated cdf and pdf are defined
respectively as [1]:

Ge() = (F(t)% a=1  And 9o () = af OFE)H*

Accordingly, the cdf and pdf when q # 1of the Exponentiated QED are given respectively
as:

Ga®A,a) = (1= [1+ (a - DAef=) G
and
2-q\ -1
9a(t,24,q) = a(Z — q)de,(—At) (1 —-[1+(q- 1)At]ﬂ) 4

Where, x >0, a, A and g are all real positive number which & and ¢ play the role of
the shape and scale parameters [6].

3. RELIABILITY MEASURES:

Survival time is defined as the time from the fixed original point to the beginning of the
event of interest. Assume for now that 7" is a continuous random variable with probability

density function (pdf )f (t )and cumulative distribution function (Cdf )F (t )giving the

probability that the event has occurred by duration ¢, survival function S (t )indicates the

probability that the event of interest has not yet occurred by time f is given by. The time to

failure analysis deals with the length of time T that a system remains operational until
experiencing a failure [15], then the hazard function is the ratio of the probability density

function to survival function { h(t) gﬂ }

S(r)

Corollary (1): Let T be a r.v. from QED distribution given in Eq.(1) and Eq.(2) then the
survival function and the failure rate function (Hazard function) are given respectively as:
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<

2_ —_— —_—
StA@) =[1+(@- DA And h(t, 2, q) = L2220

[1+(g-DAt]T=a

Corollary (2): Let T be a r.v. from Exponentiated QED distribution given in Eq.(3) and
Eq.(4) then:

2—qy\ &

S (LA =1— (1 1+ (q- 1);\t]ﬁ) hg (b q) =

2—qy @1
a(z—q)xeq(—xt)<1—[1+(q— 1))¢]ﬁ>

2-q\
1—<1—[1+(q—1)?\t]1'q>
Moment Measures
Therefore, we derived expressions for some important moment measures.

Corollary 3: Let T be a r.v. from QED distribution given in Eq.(1) and Eq.(2) then the first
four moments of the distribution when q > 1 are given in Table 1.

Moment Mathematical expression
1 1 3
_—, < —_—
31—21q 12
2 < 4
2 26 —17q+12)’ 153

Table 1. The first two moments of QED

Corollary 4: Let T be ar.v. from Exponentiated QED (EQED) distribution given in Eq.(3) and

Eq.(4) then the first four moments of the distribution when q > 1 and @ = 2are given in Table2.

Moment Mathematical expression
1 2 oy (DA ) ) )
(=)
_RQZFEINEED
réh
Mg —1)?
2 o () (o) )

2 204,273,
2-q)(—*+ = 7,(1)1
1 596 o

2 ZF1(3'F; 71 ]

réh

2(q—1)°

Hrézh

Table 2. The first two moments of EQED
Where: 2F1(a,b; c;z) = ——2— [ tb=1(1 — £)c~b=1(1 — zt)=adt

T'(b)[(c—b) 70
_ 1 2N 9q-16
Then, E(X) = 2(3q-5) and E(X%) = 22(18q3-81q2+121q—60)
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4. MAXIMUM LIKELTHOOD ESTIMATION

Numerous estimation methods are recommended in statistical theory but the maximum
likelihood estimation method is the supreme used. Let X is random variable following
Exponentiated QED distribution of size n with a vector of parameters(a,, q)T. Then sample
likelihood function is given as:

ﬁg(xi) = ﬁa(Z — Aeg(—Ax) (1 -[1+@q- 1))in]i:_g)a_1
i=1

i=1
Log-likelihood function is

2-q

L =nloga +nlog(2 — q)A +logeq (—AZ xi> +(a— 1)2 log [1 —[1+ (g = DAx;]r-a
T

The exact solution of the estimator is not possible. So it is well-situated to use Newton-Raphson
algorithm to maximize the above likelihood function numerically. One can use R or

MATHEMATICA.

5. APPLICATION TO TIME TO EVENT DATA

In this section, we provide a time to event (TTE) data analyses to assess the goodness-of-fit of QED
and EQED distributions.The data set described by [16] represent the survival times of patients tribulation
from Head and Neck cancer disease and treated by a combination of radiotherapy and chemotherapy for
44 patient.

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36

74.47 81.43 84 92 94 110 112 119 127 130
155 159 173 179 194 195 209 249 281 319
519 633 725 817 1776 36.47 133 339 68.46 140
432 78.26 146 469

Table 3. TTE Survival Data

The maximum likelihood estimates (MLESs), the corresponding standard errors of the unknown
parameter for the TTE data are presented Table 4.

QED EQED
Estimate Value S.E Value S.E
A 0.0127 0.0042 0.0224 0.0124
g 1.4162 0.0942 1.3595 0.0845
a o o 2.0293 0.6985
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Statistics of TTE data
AIC BIC KS A P-valug
QED 569.534 573.103 0.129 0.168 0.417
EQED 561.797 567.149 0.067 0.115 0.979

Table5. Goodness of fit tests

Several goodness of fit criterion were used to test if the data fit the model including, Akaike
information criteria (AIC), Bayesian information criteria ( BIC), and two distribution tests; K-
S and Anderson-Darling (A-D).

The goodness of fit results was acceptable and all values for EQED is less than the goodness of
fit tests of QED. The results indicate an excellent fit with K-S distance value between the
empirical and the theoretical with P-values for QED and EQED equal to 0.48 and 0.98,
respectively. The results indicated that adding a new parameter to the distribution leads to a
better fit to the data.

CONCLUDING REMARKS

In this article, EQD is discussed and EQED is proposed. A mathematical treatment of
the suggested distribution including some formulas for the probability density and distribution
functions, hazard, reliability are provided. The formulas of the first fourth moments are given
under some restrictions and the estimation of the parameters using by maximum likelihood
method are given in the unclosed form. The usefulness of the suggested distribution is
illustrated in an analysis of TTE data.
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INFORMATION-THEORETIC ESTIMATION APPROACH: TUTORIAL
AND ILLUSTRATION

Sondos Aldamen’!, Amjad D. Al-Nasser, ~ Mohammad Al-Talib
Department of Statistics, Science Faculty, Yarmouk University, 21163 Irbid, Jordan
!sondos.aldamen@yu.edu.o

ABSTRACT

In this tutorial, the information theoretic estimation approach as proposed by
"Golan, A., G. Judge, D. Miller. (1996) [Maximum entropy econometrics: Robust estimation
with limited data. New York: John Wiley and Sons]" for estimating a nonlinear regression
model will be illustrated. The tutorial is divided into two parts; theoretical and empirical.
The theoretical illustration will be used for estimating the unknown parameters of the
quadratic regression model. However, the empirical illustration will study the performance
of using different entropy measures (i.e., Shannon, Renyi and Tsallis) in estimating the
probability of a discrete event.

Keywords: Generalized Maximum Entropy, Entropy Measures, Jayne's dice Problem, Nonlinear
Regression.

1. INTRODUCTION

The problem of statistical inference is well known as a process of using data analysis
to investigate the properties of an underling distribution. However, when the underling
distribution is unknown we need advance statistical procedure for drawing inferences from
limited and insufficient information. One of these statistical procedures was suggested by
[15]; which consider the foundations of information theoretic approach in statistical
inference or the inference under uncertainty. As a consequence,[11, 12] proposed a
generalization of Bernoulli’s and Laplace’s principle of insufficient reason formulated based
on the recognized work of [15].Jaynes’s maximum entropy (ME) formalism aimed at
solving any inferential problem witha well- defined hypothesis space and noiseless but
incomplete information.This formalism was subsequently generalized to the linear model
by [8]; who suggested the generalized maximum entropy (GME) estimation approach. Then
after, many researchers extended and developed the idea of GME to several linear models
[1,2,3,4,5,6,7,8,9]

In this paper, the information theoretic approaches ME and GME will be discussed in estimating
the unknown distribution and in the context of the quadratic regression models, respectively.

The rest of this article is organized as follows, Section 2 the definition of the entropy will be
given and some entropy measures will be defined. Section 3 an illustration of the GME
estimation procedure in fitting the quadratic regression model. Section 4 will illustrate the
Jayne's diceproblem in estimating the unknown distribution using different entropy measure.
The article ends with a concluding remark section.

2. ENTROPY DEFINITION

Entropy as a mere word has a high diversity in meaning and also developed and
used in many fields; the origin of it derived from the Greek meaning "transformation"; an
important concept in thermodynamics/ physics which states that any change occurs
spontaneously in a physical system must be accompanied by an increase in the amount of
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"entropy" here it means the amount of changing in a system[1].In earlier 1870's a statistical
scientists gave "Entropy" a statistical meaning related to the probability theory such as
Boltzman, Gibbs and Maxwell considering entropy as a measure of the information. In 1948,
Shannon introduced the information theory (concept of it: having a way to transfer the data
of any type or size without having any loss)how considered entropy as a fundamental
concept and a basic measure in that precisely measures the amount of the data (in bit)
including the error (which called uncertainty amount). The entropy can be measured by the
maximum information that can be obtained from an event, at the same time; the information
can bemeasured by the occurred probability of that event. Accordingly, many entropy
measures can be define, for illustration as; let the X be a discrete random variable with K
possible outcomes; say xq, X5, ..., Xj; Where the probability of occurence of the jth outcome
ispj;j =1,2,..,ksuch that ;p; = 1 (Figure.1)

=
N
A 4
=
N

=
=
\4
=
=

Figure 1. Illustration of a discrete random variable with finite probabilities

Then the information of a the j™ event can be obtained as {h(xj) =Iln (pl) = —In(p j)} ; where
J

the amount of information is defined as {h(xj) = log, (&) = —log,(p j)}. Accordingly, [15]
j

defines the entropy as the expected information content of an outcomeof X with a discrete

probability distribution Pas H(P); Illustration is given in (Figure 2).

Entropy H(P)

== 7 pj In(p;)

Informatio
= —In(p;)

A4 Vl

Figure 2. Illustration of Information Vs. Entropy

There are many poplar generalized entropy measures [14, 16], the most interesting and well-
known in information theory are

e Renyi Entropy {R(a’) = ﬁln Yk p,‘?} , where @ > 0; and
1

o Tsallis Entropy {T(q) =T [Zk pp - 1]} ,  where g>0

Noting that, both measures of order 1 are reduced to the Shannon Entropy, (Figure 3).

R(1)

A4

H(P)

T(1)

\ 4

Figure 3. Relationships between Shannon Entropy and Renyi or Tsallis Entropies
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3. FITTING QUADRATIC REGRESSION MODEL

Quadratic regression model is a polynomial regression model of order 2. In general,
quadratic regression is a process of fitting parabola equation to a set of data which can be
represented in the following equation [13]:

yi= «a + ,lei + ﬁzxiz + Ei;i = 1,2, ., n, (1)

Wherea, §; and (8, are the unknown parameters and y is the response variable while x is the
explanatory variable. There are several estimation methods that can be used to fit
“Eq. (1)”.However; our interesting in this article is to use the GME as a new estimation method.
Unlike the ME, the GME has an extra step in unknown parameters are not in probability forms
before starting the estimation process. Therefore, Following [3, 9, 10] we should rewrite the
unknown parameters given in Eq.(1) as a convex combination to a discrete random variable.
Accordingly, the new formulation of the unknown parameters and the error term will be
rewritten as:

k r s m
a = Zaipi ) B = zbqulj , B = szcqzc ,and & = thlwtl
i=1 j=1 c=1 =1

It is worth to say here some values should be known to the researcher before he starts in the
estimation, these values includes k, r, s and m which reflects the number of unknowns in the
new parameterizations. Based on [3], the research can select these values between 3 and 7.
Moreover, the realizations which include {a, b1, b2, and v} are given values thatdistributed
uniformly around zero. Now, the new model will be of the form:

{Yt = Y5 aipi + (Z;=1 b1jQ1j) * Xp + (Bic1 baclar) * xE + X2y 171:1W1:l} (2)

In this model we have {k+r+s+m*n}! unknowns. However, based on the GME formulation we
have {3+m™*n} equations, therefore, “Eq. (2)”is an ill-posed models [7,8]. Using GME, the
model can be estimated in four steps [1, 3]:

Step.1: Re-parametrize the unknown parameters and the disturbance term (if they are not in
probabilities form) as a convex combination of expected value of a discrete random variable.
Step.2: Rewrite the model with the new re-parametrization.
Step.3: Formulate the GME problem as a nonlinear programming problem in the following
form

Objective function = Entropy function
Subject to
(1) The re-parametrized model
(2) The Normalization constraints.

Step.4: Solve the nonlinear programming by using Lagrange method.
According to this algorithm the GME problem is
Maximize H(p, q1j,qzc, W) =—2piInp; = Xq1jInq1; — X qoc N qoc — Zwy Inwy

Subject to:

k

T S m
11—y = Z a;p; + 2 bijqqj | * x¢ + (z b20q20> * XF + Z VW
j=1 c=1 =1

i=1
Z—Zpi=1;2q11=1;2q2621;Zwtl=1
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Now, we will use the Lagrangian method to solve this problem and find the appropriate
estimates for each parameter as follows:

L=H®, 41, @2c . WA (Ve — iy aipi — (Zfo1 b1jdaj) * % — (Ticq bacac) * X —
Y vaw) L — D A3 X a1 — D+ A X g — 1)+ A5 Ewy — 1)

Solving the first conditions, then we have:

_ e M4y e A1xth,
bi = PR q1j = Z;_le—alxtblj

e _Alx%bzc e - Aqvy
= —7_ W = =
q2c 2§=1 R —AqxZby tl Z?:ll e — A1V

This will be applied on a numerical optimization package as R or Matlab to have the desired
results.

4. EMPIRICAL ILLUSTRATION: JAYNE'S DICE PROBLEM

In 1957and based on the information theory concept (Shannon, 1948), a new
estimation method raised by Jayne's called the Maximum Entropy Principle (MEP) which
estimated parameters based on finding a probability distribution subject to some constraints
came up basically from the data .The estimator that revealed by this way is not necessarily
the best one but it’s the best depending on what information's we have. The estimation
algorithm of ME is given by [1]. To illustrate this algorithm we revisited the Jayne's dice
problem. The problem can be described as follows: When a dice is rollinga very large
number of times "N", then the upper-face could be any value j such that j = 1,2, ..., 6 with
corresponding probabilities py, py, ..., Pg, such that p;€ [0, 1] and Y, p; = 1. If we told that
the average number of upper-faces was not 3.5 " which occurred with a fair dice", instead
we assume the average to be "<a>" where a could be any real number between 1 and 6; that
is to say {Z?=1 i *p; = a}. Then the problem is "what is the optimal distribution
"probabilities of each event" in this experiment that satisfies both constraints. This is clearly
an ill-posed problem which can be formulated based on the ME algorithm [1] as a nonlinear
programming system(Figure 4).

Max(Entropy Measure)
pj

Subjectto
Where Entropy Measure 2 E pj=1
could be H(P), R(a) or T(q)

/

\_

Figure 4. ME Mathematical programming system

The model given in Figure 4, can be solved by applying the lagrangian method. We solved this
problem under the assumption that <a>= 2.5 or 4.0; the results are given in Table 1.
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Table 1: optimal solution of Jayne's dice problem

Entropy | <a> P1 D2 D3 D4 Ds De H(p)
Measure

25 10346 [0.239 [0.165 |0.114 ]10.079 ]0.055 |1.61

H(P) 40 10.104 ]0.124 [0.147 |0.174 ]0.207 |0.245 |1.75
R(0.5) 25 10368 |0.225 [0.152 [0.109 |0.082 |0.064 |1.70

] 40 10.107 ]0.124 |[0.144 |0.171 |0.205 |0.250 | 1.77
T(0.9) 25 10352 10.237 [0.162 |0.113 |0.079 |0.057 |1.77

4.0 10.104 |0.122 [0.145 [0.173 ]10.207 ]0.248 |1.90

It could be noted that from Table 1, the entropy value of Shannon measure is less than other
entropy measures. Also, the probability values decreases (that is to say pi< p»< ... < ps) when
the value of <a> less than 3.5; while the probability values increasing when <a> is more than
3.5.

CONCLUDING REMARKS

This article discussed the steps that should be used in fitting quadratic regression
model by using the generalized maximum entropy estimation approach. The GME
suggestsof reparametrize the regression model by rewriting the unknown parameters as
expected values of a discrete random variable then go through four steps in order to estimate
the unknown parameters. An illustration is given using the Jayne's dice problem, using
different entropy measures, the results indicated that Shannon entropy is the best measure
to be use for fitting equation to data in terms of minimizing the uncertainty of the estimator.
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ABSTRACT

In this paper the two parameters mixed probability distribution from exponential p.d.f. (B), and
two parameters Gamma(p,a), which is called (Quasiy-Lindely) is introduced, the p.d.f. is
defined and also the CDF and Risk function and hazard function are estimated using methods
of moments and maximum likelihood and L-moment. The comparison is done through
simulation using different values of sample size n and different set of initial values of parameters
(B,o) and all the results obtain using (function fsolve) in program (MATLAB R2012a) and
function x=fsolve(fun, xo) and all the results of estimation are explained in tables, and also
conclusions and referenced are exposed.

Keywords: Two parameters Gamma (2, ); Moments method estimators (MOM); Maximum
likelihood estimators (MLE).

1. INTRODUCTION

Quasi Lindely probability distribution is one of the mixed distributions for exponential
with parameter (f) and Gamma distribution with two parameters (2,3) many researches
work on introducing mixed distribution like Lindely [1] and Sankaran [3] introducing
lindely with discrete Poisson also Gupta and Kundu[4] introduced generalized
exponential with estimation as well as in Lindely[1] introduce fiducial distribution with
applying bayes estimators to estimate Risk function and Lindely[2] compared different
baysian estimator for parameters of lindely distribution shanker and Mishra [5]
“introduced a paper about quasi lindely distribution, here we continue the work about
this distribution and we apply three different methods like moments and L-moments
and Maximum likelihood method to compare the Risk function of two parameters
(quasi-lindely)[6][7][8].

2. THEORETICAL ASPECT

2.1Quasi Lindely
It is one continuous distribution obtained from mixing:
filx) = Be P~ x>0 (1)
Exponential distribution, and the second one is Gamma with (2, p):
fa(x) = p*x e F* (2)
f(x,a,B) =pfi (916) + 1 -p)fa(x) 3)
- e -Bx 1 NP2, ,—PBx
a+1 'Be + (a+1)ﬁ xe (4)
Equation (4) can be simplified to:
flx,a,p) = LB o—px >0, >0, a>-1  (5)

(a+1)
Pis scale parameter and a is location parameter. The p.d.f. equation (5) is called (quasi
lindely) when (a=P) then p.d.f. (5) reduced to Gamma (2,p):

B = Lo+ xe7Fr x>0, >0
While the cumulative distribution function is:
F(x)=pr(X <x) = foxf(t) dt:%fox[a e Pu + Bue=F¥|du

Therefore the CDF of Quasi lindely is:
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(1+a+px)e P

E(x)=1- s x>0, >0, o>-1 (6)
We can also prove that (mr), the rth formula about origin is:
mr=E(x") = fooo x" f (x,a,B)dx (7)
Using transformation (x= y/B), we can solve integral (6) and prove that:
= E(x7) = [blatr+i]
Mr=E(") = =255 (8)
From Mr we find:
_ _ _a+2 &
E(x) - l’ll - ,B(a+1) n (9)
And
2y o _ 2(a+3) le
E(x*) = f, = B i) =—LThen the variance is:
2 _ _ 2 _ @« 24+aa+2
And also we can find the coefficient of variation (C.V.)
az+4 a+2
V.= [ ()

After we define the distribution and its mean and variance, we work on estimating its
two parameters (, a) by method of moments and then L-moments and maximum
likelihood and then comparing estimators by simulation procedure and use these
estimators (&, f) to estimate risk function h(t) which is:

h(t)= % for human application and h(t)= % for tools and equipments. In our studied

probability distribution the hazard function:
h(t)= L& @ _ Ba+Bt)
R(t)  1+a+Bt

andMSE (h(t)) GGG

n
2.2 Moments estimator
The estimators by this method obtained from solving equation:
Uy = Ex" forr=1, 2

>0, a>-1, p>0

. a+2  ¥haxi 2@+3)  YiExi®
M=sa+D" " n Ba+D  n
Then Yx2(@+1)p*=2n(a@+3)

—_— _ , 2n (a+3)
ﬁmom - sz(a+1)(12)

This equation solved numerically by fixed point method.

According to given values of a and B and values {x;} at sample size (n), also we can
use (function in f solve) in program (MATLAB 12012 a).

X= f'solve (fun, x0)

Finding B,,om , We can use it to find @y, from solving equation (13):

Omom+2

Bmom(@mom+1)

5 2n a+6n
Prmom = /m(m)

Solve by fixed point method to find the estimator £,,,pp, -

X = (13)
mixi?  2(a+3)

n  B2a+1)
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2.3 Estimation by L moments
This method is due to Hosking (1990) which depend on order statistics for expected
value of liner components from order Statistics.
Here we have two parameter (3, @) so we need two linear moments were first find the

formula of tf, from equation (14) (Linear moments).

”,r = fx [F(X)]r f(X) dx... 14
While linear moments for sample is:

1
L, = ‘E? 1 X(i)
o 1)21 1(l 1)X(l) - L1(15)

And then we equate population moments p;, y, with
Exy = L1(16)

L, =

Exy? =1L, = n(n 5 21 = Dx(17)
Now the estimator by L- Moments produce:
2(a+3) _
@ = e 1)21 1( = Dxgy — Ly(18)
X2 (a+1)
2X2(a+1)(a+3) _
(@+2) n(n D Zl 1(l 1)X(l) — L1(19)
Solve equation (19) numerically gives (& mom) then use (& mom)introduce
(ﬂL mom)

(aL mom"‘z) v
— = X(20
BLmom (@Lmom+1) ( )
2.4 Maximum likelihood method

Let x1, X2... Xa be ar s from P.D.F in equation (5), Then:

L= nf(xua’ p) = (af— 1) l_[(a + Bx;) e~ BEizixi
logL = nlog(ﬁ) nlog(a + 1) +Z ,log(a + ﬁxl) By x (21

dlog _ n alog _n n _ 1
Then 7 = 2+ iy p s — Xikq xiAnd a1 " 21 (a1 pxy)
dlog ~ n
From——=0, & =|———F 1= —n —-1)(22
Ey MLE ( ?=1(a+ﬁx )) (Zl 1a+Bx)™t )(22)
—_— n
= — (23
Puve <zy=1xi—2?=1xi(a+ﬁxi) 1)( )

3. SIMULATION PROCEDURES
We comparing three estimators of risk function by simulation procedure were the data
is generated we assume sample size n=20, 40, 60, 80. And generate the values of
(random variable x) which follows quasi lindely with two parameters (B, o) using
method of (reject and accept) using the following steps:
1) Generate random variable Ui distributed uniformly ui~ u (0,1).
2) Generate another two random variables ziexp(p) and vi ~gamma (2, 6 ).
3) Letp = ﬁ if ui< p then Xi=Z; otherwise Xi=V;
4) Estimate parameters of (Q.L) by (i) method of moments (ii) method of L-
moments (iii) methods of maximum likelihood.
5) The comparison between estimators of A;(t) is done using mean square error
MSE, i.e.MSE (hy(1)) = E=lO- A®)

n
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We indicate that the sample size chosen are (n= 20, 40, 60, 80) and initial values of (3,
a) are (0= 0.5, 1.2) and (= 0.8, 1.5).

Table 1:Estimators of risk function

n a ﬁ ti ﬁM_QM hLM_QM EMLE
1.5 0.3378 0.3187 0.3062
2.5 0.3978 0.3752 0.3698
20 0.5 0.8 35 0.4069 0.4612 0.4802
4.5 0.3135 0.3051 0.3062
5.5 0.3472 0.3321 0.3473
1.5 0.3152 0.3224 0.3116
2.5 0.4022 0.3252 0.3462
20 0.5 1.5 3.5 0.4632 0.3637 0.3725
4.5 0.4031 0.4166 0.4235
5.5 0.4421 0.4617 0.4382
1.5 0.4152 0.4170 0.4231
2.5 0.3613 0.4228 0.4116
20 1.2 0.8 35 0.3825 0.4107 0.4221
4.5 0.3746 0.41106 0.4017
5.5 0.4170 0.4005 0.4003
1.5 0.4165 0.4325 0.4227
2.5 0.4636 0.4265 0.4266
20 1.2 1.5 35 0.4601 0.4394 0.4278
4.5 0.4421 0.4255 0.4166
5.5 0.4392 0.4106 0.4005

Table 2: Estimators of Risk function h;(ti) of Q.L.

n a ﬂ ti h’MQM hLMQM EMLE
1.5 0.4088 0.4188 0.3166
2.5 0.4852 0.4663 0.3624
40 0.5 0.8 35 0.5321 0.4502 0.4088
4.5 0.5506 0.4356 0.4521
5.5 0.5563 0.5113 0.4312

Table 2 (Continued)

1.5 0.6141 0.5221 0.4025
2.5 0.6233 0.5662 0.5763
40 0.5 1.5 35 0.6011 0.5582 0.5766
4.5 0.5892 0.6043 0.5822
5.5 0.5713 0.6122 0.5831
1.5 0.5561 0.6003 0.3322
2.5 0.5368 0.6112 0.3842
40 1.2 0.8 35 0.5311 0.6132 0.3226
4.5 0.5677 0.6141 0.4205
5.5 0.5078 0.6631 0.4762
1.5 0.5146 0.4663 0.4612
25 0.5526 0.4509 0.4663
40 1.2 1.5 35 0.5106 0.5403 0.5132
4.5 0.5312 0.5266 0.5300
5.5 0.5441 0.5466 0.5433
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Table 3: Continue comparing estimators of hazard function of Q.L.

n a ﬁ ti hM_QM hLM_QM EMLE
1.5 0.4335 0.4298 0.3274
2.5 0.4902 0.4783 0.3752
60 0.5 0.8 35 0.5416 0.5206 0.3482
4.5 0.5662 0.5703 0.4036
5.5 0.5837 0.5663 0.4452
1.5 0.3467 0.4076 0.3602
2.5 0.4768 0.4767 0.3675
60 0.5 1.5 35 0.3202 0.5320 0.4217
4.5 0.5388 0.3988 0.4452
5.5 0.5702 0.6148 0.4906
1.5 0.4224 0.4036 0.3263
2.5 0.4736 0.4828 0.3862
60 1.2 0.8 3.5 0.3167 0.5166 0.4212
4.5 0.5467 0.5467 0.4456
5.5 0.6078 0.5782 0.4227
1.5 0.3928 0.6122 0.3536
2.5 0.4652 0.6037 0.6261
60 1.2 1.5 35 0.5088 0.5083 0.5142
4.5 0.5436 0.6642 0.5521
5.5 0.6036 0.6651 0.5136

Table 4: Comparing estimators of hazard function of Q.L.

n o B ti hM hLM hMLE
1.5 0.3987 0.4036 0.3864
2.5 0.4637 0.4726 0.4677
80 0.5 0.8 35 0.5082 0.5271 0.5022
4.5 0.5392 0.5467 0.5536
5.5 0.5514 0.5334 0.5542
1.5 0.3886 0.4761 0.6019
2.5 0.4617 0.5062 0.6211
80 0.5 1.5 3.5 0.5072 0.4582 0.5306
4.5 0.5498 0.5563 0.5241
5.5 0.5567 0.5571 0.5321
1.5 0.6332 0.5572 0.5516
2.5 0.6034 0.5862 0.5312
35 0.6115 0.5599 0.5528
80 1.2 0.8 Table 4 (Continued)
4.5 0.6273 0.5603 0.5528
5.5 0.6374 0.5432 0.5762
1.5 0.3962 0.5531 0.5832
2.5 0.4667 0.8054 0.6061
80 1.2 1.5 3.5 0.5132 0.6321 0.6364
4.5 0.5416 0.6255 0.6472
5.5 0.5521 0.6284 0.6566

Table S: values of mean square error for estimating reliability function by three models

Model N MLE MOM BEST
25 0.010976 0.010964 MOM

I 50 0.002115 0.005316 MLE
75 0.00097 0.002987 MLE

25 0.01664 0.01464 MOM

II 50 0.00403 0.00758 MLE
75 0.00254 0.0055 MLE

25 0.012014 0.009148 MOM

I 50 0.00342 0.00643 MLE
75 0.001859 0.001992 MLE
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CONCLUSIONS
(1). For three estimators of (a) and (B) by three different methods and then computing

estimators of Risk function, we find that Ry0p » Riyom = % * 100

and Ryyp = 5= * 100 , andRyoy = o * 100

i.e. the first best one is MLE and then MOM and finally LMOM.

(2). In case of estimations in Reliability function we need to compute Reliability function for
distribution of time to failure, but for biological application and medical applications we need
to compare results by Risk function.
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ABSTRACT

An endomorphism « of a ring R is called weak symmetric if whenever the product of any three
elements of aring R, abc, is a nilpotent element of R, then so is aca(b). A ring R is called weak
a-symmetric if there exist a weak symmetric endomorphism « of R. The notion of weak «a-
symmetric ring is a generalization of @-symmetric rings as well as an extension of symmetric
rings. In this paper, we investigate characterization of weak a-symmetric and there related
properties including extensions: In particular, we show that every semicommutative and weak
a-symmetric ring is weak a-skew Armendariz. We also proved that, the semicommutative ring
is weak a-symmetric if and only if the polynomial ring R[x] of R is weak a-symmetric.

Keywords: semicommutative ring; symmetric ring; weak o-symmetric ring; weak o-skew
Armendariz rings

1. INTRODUCTION

Throughout, R denotes as associative ring with unity. For a ring R with a ring endomorphism
a:R = R, a skew polynomial ring R[x; ] of R is the ring obtained by giving the polynomial
ring over R with the new multiplication xr = a(r)x for all r € R. For a ring R, we denoted by
nil(R) the set of all nilpotent elements of R and by R[x] the polynomial ring with an
indeterminate x over R. A ring is called reduced if it has no nonzero nilpotent elements. Lambek
called a ring R symmetric [8] provided abc = 0 implies acb = 0 for a,b,c € R. Every reduced
ring is symmetric ring [11, Lemma 1.1]. Cohn called a ring is reversible [3] if ab = 0 implies
ba = 0 for a,b € R, reversible rings are semicommutative, i.e., whenever ab = 0 we have
axb = 0 for each element x of the ring, and semicommutative rings are abelian, namely, satisfy
" idempotents are central " condition. Lambek called a right ideal I of a ring R symmetric if
rst € I implies rts € [ for all r,s,t € R. If the zero ideal is symmetric then R is usually called
symmetric. An endomorphis & of a ring R is called a weak reversible if whenever ab € nil(R)
for a,b € R, ba(a) € nil(R). A ring R is called weak a-reversible if there exist a weak
reversible endomorphism a of R [1]. A ring is said to be a-compatible if foreach a,b € R, ab =
0 © aa(b) = 0 [4]. According to Krempa [6], an endomorphism of a ring R is called to be
rigid if aa(a) = 0 implies a = 0 for a € R. A ring is called a-rigid if there exist a rigid
endomorphism a of R. A ring R is a-rigid if and only if R is a-compatible [4, Lemma 2.2]. By
[10], R is said to be weak a- rigid if aa(a) € nil(R) © a € nil(R). Also, aring R is weak a-
rigid and reduced if and only if R is a-rigid. An endomorphism of a ring R is called right (left)
symmetric if whenever abc = 0 for a,b,c € R, aca(b) = 0 (a(b)ac = 0). A ring is called
right (left) a-symmetric if there exist a right (left) symmetric endomorphism a of R [7].

The notion of a-symmetric ring for an endomorphism « of a ring R is a generalization of «a-
rigid rings and an extension of symmetric rings. By [7, Theorem 2.8], a rings is a-rigid if and
only if R is semiprime and right @-symmetric. Also, if the skew polynomial ring R [x; a] of a
ring R is a symmetric ring then R is a-symmetric.

In this note, we introduce the concept of weak a-symmetric rings with respect to an
endomorphism a of R. We considering the nilpotent elements instead of the zero element in a-
symmetric rings to investigate the nilpotent elements in @-symmetric rings. We also investigate
connections between weak a-symmetric condition and other related conditions such that a-

" Corresponding author :wfakich@kau.edu.sa;
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symmetricity and weak a-rigidity. The relationship between a-compatible rings and weak «a-
symmetric rings is also studied. To illustrate the concepts and results some examples are
included.

2. ON WEAK a-SYMMETRIC RINGS.

Definition 2.1. An endomorphism « of a ring R is called a weak symmetric if whenever abc €
nil(R) for a,b,c € R, aca(b) € nil(R). A ring is called weak a- symmetric if there exist a weak
symmetric endomorphism a of R.

It is easy to see that any subring S with a(S) € S of a weak a-symmetricring is also weak
a-symmetric. Also, if R is reduced ring then this definition coincides with the definition of a-
symmetric ring [7].

The following example shows that there exists symmetric ring which is not weak «a-
symmetric for some endomorphism « of R.

Example 2.2. LetR = S @ S, where S be any non-zero symmetric ring. Then R is symmetric.
Now, let a:R — R, given by a(a,b) = (b,a). For a =(1,0), b =(0,1), ¢ =(1,1), abc €
nil(R) but aca(b) & nil(R). Therefore R is not weak a-symmetric.

For an endomorphism a of a ring R the map @:T,(R) = T,(R) defined by c‘r(aij) =
(a(aij)) for each (a;;) € T,,(R) is a ring endomorphism of T;, (R).

Proposition 2.3.4 ring R is weak a- symmetric if and only if the upper triangular matrix ring
T,.(R) over R is weak &-symmetric.

Proof.One direction is trivial, since any subring S with a(S) € S of a weak a-symmetric is
also weak a-symmetric. Let A = (al-j), B = (bl-j) and C = (¢;j) € T,(R) such that ABC €
nil(T,,(R)). Then a;;b;;c;; € nil(R) for each 1 < i < n. Since R is weak a-symmetric. Then
ACa(B) € nil(T,,(R)) and the result follows.

Recall that for a ring R and an (R,R)-bimodule N, the trivial extension of R by N is the ring
T(R,N) = R®N with the usual addition and the multiplication (ry,n, )(12,n; ) = (1 1e,1yN, +

1,14). This is isomorphic to the ring of all matrices (6 :), where r € R and n € N and the

usual matrix operations are used.

Corollary 2.4. Let a be an endomorphism of a ring R. Then R is weak a-symmetric if and only
if T(R,R) is weak a-symmetric.

It is clear that any weak a-symmetric ring is weak a-reversible. Since every n-by-n full
matrix ring M,, (R) over a weak a-reversible is not weak @-reversible [1,Example 2.5]. Then
every n-by-n full matrix ring M,,(R) over weak a-symmetric is not weak @-symmetric, where
n=2.

Proposition 2.5.Let R be a ring with an endomorphism a.
(1)  If a is a monomorphism, then each weak a-symmetric ring is weak a-rigid.
(2)  Ifnil(R) is a symmetric ideal, then each weak a-rigid is weak a-symmetric.

Proof.
(1) Let aa(a) € nil(R). Then a(a)a(a) = a(a?) € nil(R), since R is weak a-
symmertic. There exist k > 0 such that a(aZk) = 0. Hence a € nil(R), since a is a
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monomorphism. Conversely, let a € nil(R) then aa(a) € nil(R), because R is weak
a-symmetric.

(2) Let abc € nil(R), then cab €nil(R) and a(c)a(a)a(b) € nil(R), hence
a?(b)a(c)a(a)a(b)ca € nil(R) since nil(R) is an ideal. So a(b)ca € nil(R)
because R is weak a-rigid. Hence aa(b)c € nil(R) and aca(b) € nil(R) , since
nil(R) is a symmetric ideal.

Lemma 2.6. Let R be a weak a-symmetric ring if abc € nil(R), then aa™(b)c € nil(R) and
a™(a)bc € nil(R), for any positive even integers n,m.

Proof. Let abc € nil(R). Since R is weak a-symmetric ring, then aca(b) € nil(R) and
ca(b)a € nil(R). By using again the weak a-symmetricity, we have caa?(b) € nil(R) and
aa?(b)c € nil(R), then aca3(b) € nil(R) and caa*(b) € nli(R), hence aa*(b)c € nil(R).
Continuing this process we get aa™(b)c € nil(R) where n is an even positive integer. On the
other hand, if abc € nil(R) then cab € nil(R), using the above method for cab, we get
bca™(a) € nil(R), hence a™(a)bc € nil(R) where m is a positive even integer.

Proposition 2.7.For any weak a-symmetric ring R, we have the following statements:
(1)  If a is a monomorphism, then a(1) = 1.
(2) a(l) = 1ifonly and only if a(e) = e, for any central idempotent e € R.

Proof .

(1)  Suppose that ais a monomorphism of a ringR. Then 1(1 - a(l))a(l) =
0, a(l)a(l - a(l)) € nil(R), since R is weak a-symmetric, then a(l - a(l)) €
nil(R). Since a is a monomorphism, then 1 — a(1) € nil(R). Note that 1 — a(1) is
an idempotent of R, and then we get 1 —a(1) = 0. Soa(1) =1 .

(2) Let e be a centeral idempotent in R, then 1(1 —e)e =0 € nil(R). Hence
1(e)a(1 —e) € nil(R). Thus there exists n > Osuch that0 = (e a(1—e))" =
ea(l—e). Thene(1l —a(e)) = e — ea(e) = 0, so a(e) = ea(e). Similarly 1e(1 —
e) = 0 € nil(R) and this implises (1 — e)a(e) = 0. Thus, a(e) = ea(e). Therefore
a(e) = e. The converse is clear.

Theorem 2.8. Let R be an abelian ring with a(e) = e for any e? = e € R. Then the
following statements are equivalent:

(1) R is a weak a-symmetric ring.

(2)  eR and (1 — e)R are weak a-symmetric.

Proof. Since any subring S with a(S) € S of a weak a-symmetric ring is also weak a-
symmetric, so we will prove (2) = (1). Let a,b,c € R such that abc € nil(R). Then
eaebec € nil(R) and (1 —e)a(1l —e)b(1 — e)c € nil(R). Since eR and (1 — e)R are weak
a-symmetric, then eaeca(eb) € nil(R) and (1 — e)a(1 — e)ca((1 — e)b) € nil(R). Hence
eaeca(eb) + (1 —e)a(l — e)ca((l - e)b) = eaca(b) + (1 —e)aca(b) = aca(b) €
nil(R). Therefore R is weak a-symmetric ring.

Let @ be an endomorphism of a ring R. An ideal I of a ring R is said to be a-stable if a(I) S
I.If I is an a-stable ideal then @: R/l — R/I defined by @(a + 1) = a(a) + I fora € R is an
endomorphism of the factor ring R /I [1].

Proposition 2.9.Let I be an a-stable and weak a-symmetric ideal of R. If I S nil(R), then
R/I is a weak @-symmetric ring if and only if R is a weak a-symmetric.

Proof. Assume that R/I is weak @-symmetric. Let abc € nil(R) for a,b,c € R. then ab¢ €
nil(R/I). Thus dc’a(b) € nil(R/I), since R/I is weak @-symmetric. So there exists a positive
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integer n such that (aca(b))n € I, then (aca(b))n € nil(R). Therefore R is weak a-
symmetric.

Conversely, suppose abé € nil(R/I). Then there exists a positive integer m such that
(abc)™ € 1. Since I S nil(R), abc € nil(R). Thus aca(b) € nil(R) since R weak a-
symmetric. Hence dc'a(E) € nil(R/I) and R/I is weak @-symmetric.

By [11], a ring R is called an Armendariz ring if whenever f(x)g(x) = 0 where f(x) =
ag + azx + -+ apx™, g(x) = by + byx + -+ + byx™ € R[x], then a;b; = 0 for each i, j.
Liu and Zhao [9] introduced weak-Armendariz rings. A ring R is called weak-Armendariz ring
if whenever polynomials g(x) = ay + a;x + -+ a,x™, h(x) = by + byx + -+ byp,x™ €
R[x] satisfy g(x)h(x) = 0, then a;b; € nil(R) for each i,j. Each semicommutative ring is
weak-Armendariz by [9].

The Armendariz property of ring was extended to one of skew polynomials [5]. A ring R is
called a-skew Armendariz if for g(x) = by + byx + -+ by,x", h(x) = ag + a;x + - +
anmx™ € R|x; a] satisfy g(x)h(x) = 0 then bl-ai(aj) =0forall0<i<nand0<j<m[5
,Definition]. Zhang and chen introduce and studied weak a-skew Armendariz rings. A ring R
is called weak a-skew Armendariz ring if for g(x) = ag + a;x + -+ + a,x", f(x) = by +
byx + -+ + by x™ € R[x; a] satisfy g(x)f(x) = 0, then a;a’(b;) € nil(R) forall 0 < i<n
and 0 <j <m[l3].

Theorem 2.10. Let R be a semicommutative ring. Then R is weak a-symmetric if and only if so
is R[x].

Proof . Since any subring S with a(S) € S of weak a-symmetric is also weak a-symmetric, so
we only prove R[x] is weak a-symmetric when R is weak a-symmetric. Let f(x) =

moaix', g(x) = Xj_objx’ and h(x) = ¥1-, ¢;x* such thatf (x) g (x)h(x) € nil R[x]. Since
R is semicommutative, then by [1,corollary 2.17], we have the following equations:

agbgcy € nil(R) (1)
aob]_CO + aobocl + a1b0CO (S nll(R) (2)
ao bv_zcl + albv_3C1 + azbv_4_C1 + A + av_]_bOcO € nll(R) (3)
aibjcl € nll(R) (4)
i+j+l=v

Since R is semicommutative, nil(R) is an ideal of R by [9, Lemma 3.1]. since agbycy € nil(R)
thencyagby € nil(R), if we multiply the Eq. (1) from the left by cy, then it follows:

CoaoblC'O + Coaobocl + COa1b0C0 € nll(R)
So,
C0a0b1C0 + Coalb()CO € nll(R) (5)

Now if we multiply the Eq. (5) by ay from right side, we can get coagb;coay + coa1bgcoay €
nil(R), so cyaybicoay € nil(R) and cyagh, € nil(R) = ayb,cy € nil(R), hence,
aobocl + alb()CO € nll(R) (6)

By multiply the Eq. (6) by ¢, from left side, then it follows, cyagbyc; + coaibgcy € nil(R)
and cya,bycy € nil(R), so a;bycyaibycy € nil(R) and aqbycy € nil(R), then agbycy €
nil(R). Now suppose that v is a positive integer such that a;b;c, € nil(R) wheni+j+k <
v, we will show that a;bjcy € nil(R) when i + j + k = v. If we multiply the Eq. (4) from the
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left side by ¢, then it follows that Y x=y Coa;bjck € nil(R). By induction hypothesis,
coa;bj € nil(R) whenever i+j<wv. So Xiij=yCoa;bjcy € nil(R), again multiply
Yi+j=v Coaibjcy by by from the left side, we get bocoa; € nil(R) when i < v and bycoa;bjcy €
nil(R) if i < v, hence bycoa,bycy € nil(R) and a,bycy € nil(R). Now, bjcia; € nil(R) and
cka;b; € nil(R) when j + k + i < v. So we can use same argument as above to get agb,cq €
nil(R) and aybyc, € nil(R), we conclude that
aibjck € Tlll(R) (7)
i+j+k=v

Forall0<i<v, 0<j<vand0<k<w.

Using again the induction hypothesis, a;bjcy € nil(R) for0 <i<v, 0<j<v ,0<k<v
and j+ k + i =v. Hence a;bjcy € nil(R) for each i,j,k. So a;cya(b;) € nil(R) since R is
weak a-symmetric. Thus fha@(g) € nil R[x] by [1,corollary 2.17]. Therefore R[x] is weak a-
symmetric.

Theorem 2.11. Let a be an endomorphism of a ring R. If R is semicommutative and «-
compatible ring. Then the ring R[x; alis weak a-symmetric.

Proof. Let f(x) =Xt a;x', g(x) = Xjobix/ and h(x) =Y ,cx' such that
f(x)g(x)h(x) € nil R[x; @]. Since R is semicommutative, then by [1, proposition 2.16] we
have the following equations:

aoboco € nil(R)
aobocy + aghya(co) + aa(by)co € nil(R) (8)
A1 @™ (by)a™(cy) + amam(bn_l)a’:“l(ck) + apma™(bp)a™(cx_q) € nil(R)  (9)
ama™(by)a™(cy) € nil(R) (10)

Since R is semicommutative, nil(R) is an ideal of R by [9, Lemma 3.1]. since agbycy € nil(R),
then bycpay € nil(R). R is weak a-reversible, hence cyaga(by) € nil(R), then a(by)cya, €
nil(R). if we multiply the Eq. (8) from the right side by a,, then it follows that : agbgciay +
agbia(cy)ag + a;a(by)coay € nil(R). Then agbyciag + aghia(cy)ay € nil(R). If we
multiply the equation above by b, from right side, we have agbyc,ayby + agbia(cy)aghb, €
nil(R) and since agbycy € nil(R) it follows agbga(cy) € nil(R). so a(cy)aghy € nil(R) and
we get agbyciagby € nil(R), then agbycy € nil(R), so agbya(cy) + aya(by)cy € nil(R)
again by multiplying this equation by a, from the right side, we get ayb;a(cy)a, € nil(R) so
a(cy)agh, € nil(R) and agbya(cy) € nil(R), hence a,a(by)cy € nil(R). continuing this
process we have aiai(bj)aj (ck) € nil(R) for each i,j. Since R is a-compatible, al-ai(bj)ck €
nil(R) and cya;a'(b;) € nil(R), hence cya;b; € nil(R) and bjcya; € nil(R). Since R is
semicommutative, bja;cxa; € nil(R) and bja;cibja;c, € nil(R) so bja;cy € nil(R) and
cxbja; € nil(R), hence bja;a’(cy) € nil(R) and a;a’(cx)a*(b;) € nil(R) for each i.j,k and
t by weak a-reversibleity of R. Therefore f (x)h(x)@g(x) € nil R[x; a] and the result follows.
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ABSTRACT
In this paper, we introduce a subclass N , (a, p,A,B ) of p —valentnon-Bazilevi“c functions

of order ¢ +iff. Some subordination relations and the inequality properties of p—valent
functions are discussed. The results presented here generalize and improve some known results.

Keywords: Analytic functions;non-Bazilevi“cfunctions; differential subordination.

1. INTRODUCTION AND PRELIMINARIES

Let Ap denote the class of functions of the form

f(@)=z"+Y a,, 2" (pneN={123.1}),(1.1)
k=n

which are analytic and p —valent in the open discU = {z eC: ‘z | < 1} f f(z)and

g(z)are analytic inU , we say that f(z)is subordinate to g(z), and we write:

f<ginUor f(z)<g(z), zeU, (1.2)
if there exists a Schwarz function w(z), which is analytic inU with
|W(O)| =0and |w(z)| <1, zeU 5such thatf(z) =gmz)), zeU.

Furthermore, if the function g(z)is univalent inU , then we have the following equivalence,
see Miller &Mocanu ([3], [4]), f(z) < g(z) < f(0)=g(0)and f(U) < g(U).

We define a subclass of 4, as follows:

Definition 1.1.Let N , (a, ,B,A,B) denote the class of functions f(z) € A, satisfying the

inequality:

a+iff a+if
z? 3 21 (2) zF 1+ Az
(””)(f(z)] ﬂ(pf(Z)j(f(Z)] RTPY SR

where ueC, > pfeR,— <B< AeR, A# B,and p € N. All the powers in

(1.3) are principal values.
We say that the function f(z)in this class is p — valentnon-Bazilevi“c functions of type o +i

Definition 1.2.Let f € N, (a, 3, p) if and only if f(z) € A, and it satisfies:

* Corresponding author
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Zp a+if} Zf/(z) Zp a+if
Re<(1 Ul ——= || — ,(zeU)(4
e{( Hl)(f(Z)] ﬂ(pf(Z)j(f(Z)] }”’( V)b

where u e C, >0, feR, 0<p<pandpelN.
Special Cases:
(1) When p =1,then N, (o, 3, 4, B) is the class studied by AlAmoush and Darus [6].
(2) When p =1, #=0,then N/, (a,O, A, B) s the class studied by Wang et al [1].
(3) Whenp =1, #=0, u=—1, A=1and B=—1,then N}, (a)is the class studied by
Obradovic [10].
(4) Whenp =1, =0, t=B=-1land 4 =1-2pthen
the class of non-Bazilevi“c functions of order p( 0<p< 1). The Fekete-Szegd problem

Ny (@,0,1-2p,-1) reduces to

of the class N, (¢,0,1—2p,—1) were considered by Tuneski andDarus [2].

We will need the following lemmas in the next section.

Lemma 1.3. [7] Let the function /(z) be analytic and convex inU with 4(0) =1. Suppose

also that the function ®(z) given by ®(z) =1+c,z" +c, 2" +--

is analytic inU .
IfCD(Z)+lZCD/(Z) <hz)(zeU y= y£)(15)
/4
then
A
O(z)<Y¥(2)= Py JO I 1h(t)a’[ < h(z),and W(z) is the best dominant for the differential
n
subordination (1.5).
1+ 4,z ~ 1+ A4z
1+B,z 1+Bz
Lemma 1.5.[9] Let®(z)be analytic and convex inU, f[f(2)ed,.If f(z)<D(z),
2(2) < D(z), 0< u<1then uf(z)+(1—p)g(x) < O(z).

Lemma 1.4. [8]Let—1< B, < B, < A4, < A4 <1,then

Lemma 1.6. [11]Let g(z) be a convex univalent function inU and leto € C, n e C— {O} with

Re {1 + zq/// (Z)} > max {O,—Re(gJ}
g (2) n

If the function® z is analytic inU and o®(z2)+7z® (2) < og(z)+1zq (z), then,
d(z) < g(z)and g(z) is the best dominant.

We employ techniques similar to these used earlier by Yousef et al. [13], Amourah et al.
([14], [15]), AlAmoush and Darus [16] and Al-Hawary et al. [13].

In the present paper, we shall obtain results concerning the subordination relations and
inequality properties of the class N} , (a, 5, A,B). The results obtained generalize therelated

works of some authors.
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2. MAIN RESULT

Theorem 2.1. Let ueC, >0, feR, a+iff#0,-1<B<1, AcR, A#B,and p e N.
Iff(z)eN}f’#(a,ﬂ,A,B),Then

a+if . P(a“'lﬁ)
’ o+i 11+ 4 -l 1+ 4
Z {p( 'B)J oy du < Z.(Z.l)
f(2) un 01+ Bzu 1+ Bz
Proof.Let

p a+if
O(z) = (Z—j (22)
f(2)
Then ®(z)is analytic in U with ®(0) =1.Taking logarithmic differentiation of (2.2) in

of'(2) _ 20/ (2)
@) @)

both sides, we obtain p(a+if)—(a+if)

#'@_ 1 0
P2 pla+ip) o)

In the above equation, we havel —

From this we can easily deduce that

a+if a+if
zf 2f' () \[ z°
1 -yl ——= || —— .23
{( ”‘)(f(z)) y(pf(Z)j(f(Z)) }( :

On a class of p —valentnon-Bazilevic functions
/

uz® (z) - 1+ Az (2.4)

pla+iff) 1+Bz

pla+if)

D(z)+

,we deduce that

PN Vi pla+ip) ] pla+if) |
z <q(z)=—p(a iB) [em (HAtjdt.
f(2) un 0 1+ Bt

Now, by Lemma 1.3 fory =

Putting# = zu = dt = zdu. Then we have the above equation with
p(a+i,8)_1

P(a+iﬂ)I11+Azuu o Iz
un 01+ Bzu 1+ Bz

, and the proof is complete.

Corollary 2.2.LetueC, >0, BeR, a+if#0, p= and peN.If f(z) € 4, satisfies

a+if / p a+if
| z’ s (Z)J(z_] L+(-2p)z
(+u )(f(z)j “ (pf(z) @) T s

then
a+ip . p(a+ip) pla+ip)
p o+ — _ -1
z ~ P( ’ﬁ) L J~1 1+(1 Zp)zuu o
f(2) un 0 1—zu

or equivalent to

225



du.

p a+ip +17 1— M_l
z <p+p(oc iB)( p)jll+zuu e
f(2) un 01—zu

Corollary 2.3.Let € C, @20, BeR, a+iff#0, Re{u}>0and p e N, then
N;»H (a,ﬂ,A,B)CN;’O(a,IB,A,B).

Theorem 2.4. LetO< g, <p,, 20, feR, a+iff#0,-1<B <B, <4, <4 <l,and
peN,thenN, (a.p,4,,B,)c N, (., 4.B).(2.5)

DMy

Proof. Suppose that /(z) e N, , (@, 3, 4,,B,) we have f(z) € 4,and
a+ip / a+ip
z?P zf' (z z?P 1+ 4,z
wolis) wlo)iE)
/() pf (@) ) f(2) 1+ B,z
Since =1 < B, < B, < 4, < 4, <1, therefore it follows from Lemma 1.4 that
» a+if / ) a+if
(1+ﬂz)( - ] —ﬂz(—Zf (Z))(—Z J < 1+A‘Z,(2-6)
f(2) pr (@) )\ f(2) 1+ B,z

thatis f(z)e N

Pty

When £, > g1, > 0, then we can see from Corollary 2.3 that f(z) e N}, (e, 3, 4,. B, ), then
» a+if
z <1+Alz.(2'7)
f(2) 1+ Bz
But

a+if / » a+if
walis) Hal)
{( +”1)(f<z>j ﬂl(pf(z) 7@
a+if} a+if / » a+if
fios Z_j “l (zj —I(Zf(z))(zJ |
{( #J(f(z) i [( ) 5m) T e e

It is obvious that% is analytic and convex inU . Sowe obtain fromLemma 1.5
+ bz

anddifferential subordinations (2.6) and (2.7) that

p \@HB / p \otihB
I+ z 3 zf (z)j(z_J <I+Alz,
{( g J(f(z)j g ( 2@ N /@ 1+Bz
thatis, f(z)e N, , (a.B.4,B,). Thuswe have N, , (e, . 4,,B,) N, , (. 3. 4, B,).

Py

(a. B, A, B,).So Theorem 2.4 is proved when g4 = 14, > 0.

Corollary 2.5.LetLet0< 1, < 1,, x>0, feR, a+iff#0,0< p, < p,,and p € N, then
N;uuz (a’ﬁ’pZ)CN;”ul (aﬁﬁbpl)‘
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ABSTRACT

In this paper, we apply an efficient algorithm based on the reproducing kernel Hilbert space
method (RKHSM) to solve a fractional version of the non-linear logistic differential equation.
The fractional derivative is presented in the Caputo sense. In order to show the accuracy and the
applicability of this method, some numerical results are given. We compare the solutions of the
proposed method with the exact solutions for integer order case.

Keywords: Fractional Logistic Equation; Riemann-Liouville Fractional Integral; Caputo Fractional
Derivative; Reproducing Kernel Hilbert Space.

1. INTRODUCTION

Logistic model was introduced to the population dynamics by Verhulst in 1838 [1] asa non-
linear first order ordinary differential equationi—ﬂf = pM (1 - %),Where M (t) is population at
time t, p > 0 is Malthusian parameter, and k describes the carrying capacity.

Let N(t) = %, then the following standard logistic differential equation (LDE) results:

= pN(@1-N). (1)
Ny

This equation has the known exact solution:N(t) = NeT(I—Ny)e=PF
0 —No

where N, = N(0) is related

to the initial population.

Logistic differential equation has many applications, see [2-4]. Moreover, fractional
calculus hasa great importance in describing some complex physical phenomena in many fields
[5-11]. The fractional logistic differential equation (FLDE) has been obtained by replacing the
first order derivative inEq. (1) by the fractional Caputo derivative D%as

DEN(t) = pN()(1 — N(1)), t>0, p>0,0<ac<l, )
subject to the initial condition

Most fractional differential equations don’t have exact solutions. So, numerical methods are
needed. Some of these techniques have been applied to solve FLDE [12-19]. In this paper, we
use reproducing kernel Hilbert space method (RKHSM) to obtain numerical solution of Eq. (2).
Reproducing kernel theory has important applications in mathematics, image processing,
machine learning, finance and probability [20-24]. Hence a lot of research work has been
devoted to the applications of RKHSM for wide classes of problems [25-31].

This paper is organized in five sections including the introduction. In section 2, some basics
of fractional calculus and reproducing kernel theory are given. In section 3, a description of the
RKHSM to solve the FLDE is discussed. In section 4, an example to show the reliability of the
RKHSMis given. A brief conclusion is presented in section5.

2. PRELIMINARIES

In this section, we introduce some preliminaries of fractional calculus and reproducing kernel
theory. For more details, see [29-31]. Throughout this paper AC[a, b] = {u:[a, b] = R: uis
absolutely continuous on[a, b]}.

" Corresponding author: Rania Saadeh
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Some basics of fractional calculus

Definition 2.1. The Riemann-Liouville fractional integral of order @ > 0 over [a, b]for a
function gis(J3, 9)(x) = ;fx 92)

r(a)’a (x—z)1-«

dz, x > a.Fora =0, Jg, is the identity operator.

Definition 2.2. The Riemann-Liouville fractional derivative of order o, 0 < a < 1 is defined

1 d t
by (D& N)@) = rman [ Z5z dt, x> a

Definition2.3. The Caputo fractional derivative of order o (0 < a < 1) is (D%, 9)(x)(x) =

1 x g
r(i—-a) fa (x—t)* dt.

Theorem 2.4. Letf (x) € C[a, b] and & > 0. Then (D&, J&. ) (x) = f(x).
Theorem 2.5.If0 < @ < 1 and f(x) € AC[a, b], then(J%,.“D&. ) (x) = f(x) — f(a).

Since the Caputo derivative has been used in this paper only witha = t, = 0, then the symbol
D%will be used instead of ¢DZ,.

2.2 Fundamental concepts of the reproducing kernel Hilbert space method

Definition 2.6.Let Sbe a nonempty abstract set. A function K:S X § = C is a reproducing
kernel of the Hilbert space # if and only if
(1) VteS, K(,) EH,

) VteS Ve e X, (p(),K(,D) = @(b).
The function K is called the reproducing kernel function of H and a Hilbert space which
possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS).

Definition 2.7. The space of functions W, [a, b] is defined as
Wila,b] = {u:[a,b] » R:u € AC[a, b],u’ € Ly[a, b]}.
The inner product and the norm for u,v € Wj[a,b] are given by (u, Vi =

ff(u(t)v(t) + u'(t)v'(t))dt and ||u||W21 = /(u(t), u(t))W21, respectively.

Theorem 2.8. The space W3 [a, b] is a complete RKHS with the reproducing kernel function
T:(s) such that T:(s) = m[cosh(t +s—b—a)+cosh(|t—s|— b+ a)].

Definition2.9. The space of real functions W% [a, b] is defined as follows:
W£[a,b] = {u:u,u’ € AC[a,b],u" € Ly[a, b],u(a) = 0}
The inner product and the norm for u, v € W#[a, b] are given by (u, v)sz =u(a)v(a) +

u'(a)v'(a) + fab u"()v"' (t)dt and ||ullyz = /(u(t),u(t))wzz , respectively.

Theorem2.10. The space W [a, b] is a RKHS and its reproducing kernel function K,(s) has

ls—a)2a? —s2+3tQ2+s)—a(6+3t+5s)), s<t
the form K;(s) = i .
~(t- a)(2a? —t>+3s2+t)—a(6+3s+1t)), s>t
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3. THE RKHSM FOR SOLVING THE FLDE
Let us consider the FLDE in Eq. (2) with the initial condition Eq. (3). First we homogenize the
initial conditionusing the substitution:M(t) = N(t) — N, to getD*M(t) + D*N, = p(M(t) +
Ny)(1 — M(t) — Ny). Since DN, = 0, Eq. (2) and Eq. (3) become
DEM(t) = p(M(t) + No)(1 — M(t) — No), )
M(0) = 0.

Define the differential operator L:WZ[a,b] > W3[a,b] such that LM(t) =
DEM(t).Hence, Eq. (5) can be rewritten as LM (t) = p(M(t) + Ny)(1 — M(t) — N,), t > 0.

Now, to construct an orthogonal function system of the space W [a, b], consider the dense
set {t;}j=10f [a, b], and letp;(t) = T¢,(t) andy;(t) = L*¢;(t), where L is the adjoint operator
of L. In terms of the properties of the reproducing kernel T;(.) , we obtain

(M(©), Yi(®))yz = (M@D), L9 (O)yz = (LM(), 9;(O)yp = LM(t;), i = 1,2, ....

Applying Gram-Schmidt orthogonalization process on {1); (t)};2,produces the orthonormal
function system {Y,(t)}2, of the spaceWZ[a,b].Let ,(t) =X, Buw,(t),i=
1,2,3, ...where f3;;are the orthogonalization coefficients, which are given by:

1 — ZpR Wi Pp (02 Bp1

1
'B — _’ﬁ.. — _ — ,andﬁ-l = - — , fori > L
BT gl \/||1pi||;/§—Z;,;ll(ll)i(t),ll}p(t));/% ' \/||wi||§V—2;,;11<¢i(t),¢p(t)>§vg

Theorem 3.1. If {t;};2, is dense on [a, b] and the solution of Eq. (5) is unique, then it has the
form M(¢t) = p ¥i21 Xi=1 Bu(M(t) + No)(1 — M(t;) — No), (t).

The n-term approximate solution M™(t) of Eq. (5) is given by the finite sum such that

n l
MA@ =p ) > BuM(E) + No)(1 = M(&) = N (o)
i=11=1
Hence, the approximate solution of Eq. (2) and Eq. (3) isN™(t) = M"(t) + N,.
4. NUMERICAL EXAMPLE

A numerical example is included to demonstrate the efficiency of the RKHSM. Results
obtained by this method for FLDE are compared with the exact solutionand are found in good
agreement with each other.
Example 4.1. Consider the FLDE
1
DEN(t) = EN(t)(1 —N@®)),NO) =p t>00<a<l.

The approximate and exact solutions of different values of a are given in Tableland Figurelfor
U =%andy =%. We take n = 25.

Tablel: Numerical results for Example 4.1 for t € [0,1] using the RKHSM.

" ‘ Exact RKHS Absolute Error ~ RKHS Solution N™(¢)
— n — — n

NOLa=1 N'@a=1  INO-N'O 5 _09  a=07

0.2 0.26921 0.26921 9.9065 x 1077 0.27366 0.28539

0.4 0.28934 0.28933 2.0637 x 10~¢ 0.29536 0.30942
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1 0.6 0.31032 0.31032 3.0952 x 107 0.31692 0.33101
— 08 0.33212 0.33212 4.0740 x 1076 0.33860 0.35127
4 1.0 0.35466 0.35466 4.9951 x 10~¢ 0.36046 0.37063

0.2 0.52498 0.52498 46269 x 1077 0.53049 0.54441
1 0.4 0.54983 0.54983 9.2369 x 1077 0.55670 0.57167
— 06 0.57444 0.57444 1.4050 x 107 0.58122 0.59442
2 0.8 0.59869 0.59869 1.9257 x 107 0.60450 0.61446

1.0 0.62246 0.62246 24991 x 1076 0.62668 0.63250

CONCLUSION

In this work, we applied the RKHSM to obtain approximate solutions for the non-linear FLDE.
The fractional derivative was described in the Caputo sense. An example are given to show the
efficiency of the proposed method. By comparing our results with the exact solution for integer
order derivative, we observe that the proposed method yields accurate approximations. To see
the effects of the fractional derivative on the logistic curve, we solved the same FLDE for
different values of the fractional order. All computations have been performed using the
Mathematica software package.

N(t)

----- Exact solution a=1 ----- Exact solution a=1
(a) — s o )
RKHSM solution a=1 —— RKHSM solution a=1
RKHSM solution a=0.9 RKHSM solution a=0.9
RKHSM solution a=0.85 RKHSM solution a=0.8
—— RKHSM solution a=0.7 —— RKHSM solution a=0.7

Figure 1: Graphical results for Example 4.1 with(a) u = % and (b) u = %
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ABSTRACT

The aim of this work is to extend the Taylor series method to higher dimensional fractal spaces.
An analytical solution of higher dimensional fractional differential equations is provided with
different fractal-memory indices in time and space coordinates simultaneously. To show the
effectiveness of the proposed method, the method has been applied to three presented models
in fractal 2D and 3D spaces. The attained closed-form series solutions are in a high agreement
with the exact solutions for the corresponding equations when they projected into the integer
space.

Keywords: Fractional partial differential equations; Taylor series method; Memory index

1. INTRODUCTION

Fractional calculus was appeared in 1695, in Leibniz letter to L'Hopital, definitely after the
classical calculus was constructed. The evolution of the fractional calculus is due to the
achievements of many mathematicians such as Liouville, Riemann, Abel, and many others,
where the huge importance of the fractional calculus in sciences encouraged them. Many
Phenomena such that, viscoelasticity, heat diffusion, mathematical biology, electrochemistry
[13,7], are presented as fractional partial differential models, from this point arises the
importance to solve these Models. With the result that, many mathematical integer-order
methods have been generalized to fractional type to convoy the developments in mathematical
sciences, such as residual power series method by Alquran et al. [3], and Abu-Arqub et al [17],
differential transform method by Jaradat et al. [12] and Taylor series.

Taylor series has been generalized by many researchers throughout the ages, Riemann,
Watanabe, Trujillo and many others [14]. But all of them ignore the power law memory of time
fractional variable and treat only the space fractional variable or vice versa [12]. Whereas many
recent studies show that the importance of combining the space variables to fractional scope.
From this point appeared the most powerful generalization of Taylor series over time and space
fractal spaces by Jaradat et al.[10,2]. These new expansions enable the researchers to solve
fractional partial differential equations (FPDEs) in higher dimensional fractal spaces where the
space and time coordiates are endowed with fractional derivatives ordering.

Several definitions for fractional derivative and integration were introduced, the most useful
fractional derivative operator is Caputo definition which we adopt in our work with the
following representation [9]:

D |u(E.0)]=

ocu(x.t) 1 j-@u(x_,rc) dx
a“  Tl-a)y ok (1-x)°
(D

Where o €
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2. THE CONSTRUCTION OF TAYLOR SERIES SOLUTIONS IN
HIGHER DIMENSIONAL FRACTAL SPACES

In this section, we introduce two different solution formulas for the (2+1)-D and (3+1)-D FDEs
that are presented into fractal 2D and 3D spaces. In some sense, the hybrid fractional Taylor's
formulas in 2D and 3D fractal spaces are obtained. We should mention that these expansions
were used before to solve different FPDEs into different dimensions [1,2,4,5,8,9,11,16].

Definition 2.1. An («, f)—fractional power series of the (2+1)-D FDEs in the fractal 2D
space [9]:
D g =g () + g W+ gy ()X ek D g, T

i+j=0 Y A k=0
i,j]EN i+j=0 i+j=1

i+j=n

(@)

where g are the coefficients of the series with function type.

The next Lemma and Remarkpresent the Taylor's formula in fractal 2D space, the proof of the
lemma is similar to the proof of Lemma (2.2) in [9]:
Lemma 2.2. [9] Let u(x,y ,t) has a FPS representation as Eq. (2) for

(c,y,0) €[0,R YxI x[0,R ) If D “D [v(x, y ,t)]e C((O,R, )xI x(0O,R,)) for r,s €N,
then

raqyp N LG +r)a+ DI +5)B+D ia_ s
DD, [u(x,y,t)]—wzog,-”,_,ﬂ(y) TGas DTG pe)  C* .(3)

Remark 1. [9]By letting (x ,t)=(0,0)inEq.(3), we have the following fractional form of
Taylor's formula that is related to Eq.(2)
o DD [olx,y, )l

L(x,y.1)= . e, )
2 @A)

In the case of converting the (2+1)-D FPDE:s into the 3D fractal space, we replace the
coefficients with function type by constant coefficients with the following formula:

o0

z a(/ktmx ]ﬁyky = oo +al * +ayx ! +ay, v+
! 1*{ }k&o i+j+k=0 i)tk =]
(%)
n r
+z z al’l—r,r—,y)s t ("_r)ax (= )ﬂy 7 Tt
r=0 s=0
i+j+k=n

Remark 2. Formulas Eq. (2) and Eq. (5) can be naturally extended to higher dimensional by
adapting the coefficients.

3. APPLICATIONS

Our purpose in this section is to present an analytical closed-form solution in fractal type for
the considered models that are embedded into fractal 2D and 3D spaces. The solutions are found
by using a parallel structure to the power series method with utilizing the previous
representations (2), (5), and there extensions.

3.1.8olution of Schrodinger mode in fractal 2D space
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Example 3.1.1. Consider the following (2+1)-D schrodinger initial value problem into the 2D
fractal space [12]:

i D [ux,y.0]=D’[utx,y.0)]+u,, x.p.0), (6)
Subject to the initial condition

u(x,y,0)=sin,(x”)+sin(y ), (7)
© (_1).i x & +
where sin ;(x 7y = Z is the fractional generalization of the function sin(x ).

(27 +DB+D)

By substituting all the relevant quantitiesEq. (3) into Eq. (6) and Eq. (7), and equating the
coefficients of like monomials from both sides, we get the following recursive equation:

I'G +Da+1 I'((j +2)+1
i Mg o)-TW P )g,-,,,.+2(y -gl()=0,
F(za+1) F(]ﬁ+l)
with initial coefficients
(-1) :
802 (V)= s &oo(¥) =sin(y). )

2 +1)p+1)

By solving the equation Eq. (8) recursively we get the following general coefficients:
-1 @)
r2j+Hp+Hria+1)

So, the exact solution of the equation Eq. (6) is given with the following series solution form:

8iaaly)= » & 0(y)=sin(y). (10)

_ C (l')i(—l)j Jia (2j+)p . C (i)i ia
D N e T PNy P T v pwaTs
s @O pe X
;F(ia+l)L;F((2j gy SV ],

(11
=E,(it")[sin ;(x 7y +sin(y)].

In particular, as the fractional derivative ordering &, f — 1 the solutionEq. (11) becomes

u(x,y,t)=e"[sin(x)+sin(y )] which is the exact solution for the projection of Eq. (6) and
Eq. (7) into the integer space.

3.2.8olution of Schrodinger model in fractal 3D space

Example 3.2.1. Consider the following (2+1)-D schrodinger initial value problem into the 3D
fractal space:

i D [o(x.,y.0)] =D o6y .0)]+ D [vx.y.0)]. (12)
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Subject to the initial condition

U(x,y,0)=sinﬁ(xﬂ)+siny(y7), (13)

By substituting all the relevant quantities Eq. (5) into Eq. (12) and (31), and equating the
coefficients of like monomials from both sides, we get the following recursive equation:

T(( +Da+1) 1((j +2)B+1) T((k +2)y +1)
l ik A ook T a; ; 1.,=0,(14)
T(ic+1) 7 r(jp+1) 7 r(ky+1) "
with initial coefficients
-1y

oo = 5 >
27 L2/ +1)f +1)
(15)
4 _ (-1
GO (K + Dy +1)

By solving the equation Eq. (13) recursively we get the following general coefficients:

a. . = C6)
i,2j+1,0 2/ +1)13+1)1"(ia+1)’

(16)
a _ D@
i,0,2k +1 F((2k + 1)7/ + I)F(l o+ 1) '

So, the exact solution of the equation Eq. (12) is given with the following series solution form

v(x,y.t)= i (i) (= ECIEI N S @) (—1)k jia, @k
N AT+ DE(2) + DB +1) & TGa+ DIk + Dy +1)

@ iYii® o x(2/+1)/3 o (2k+1)y
_y [y X T g ]
—l(a+]) ) IQj+Hp+1) =2k +)y+1)

=E, (it *)[sin 4(x 7)) +sin, (y )] (17)
In particular, as the fractional derivative ordering ¥ — 1, the same fractal solutionEq. (12) is

obtained, as «, 3,7 —1, the solutionEq. (16) becomes v(x,y,t)=e"[sin(x )+sin(y )]
which is the exact solution for the projection of Eq. (12) and Eq. (13) into the integer space.

CONCLUSION

In this work, we present an analytical fractional solution of Schrédinger, Telegraph, and Heat-
like models in higher dimensional fractal spaces. The solutions that obtained from the 3D
hybrid Taylor series method show a high agreement with that obtained from the 2D hybrid
Taylor series method as letting » — 1. Also by projecting the solutions that obtained from the

(o, B,7)—FPS into the integer space, we perceive that the exact solutions of the integer-
version of the proposed models are obtained.
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ABSTRACT

A full characterization of when T¢ with k = 2, 3, 4, is a divisor graph, was given by AbuHijleh
et.al.. Moreover, same authors gave a characterization of 7%, when it is not a divisor graph, for
any positive integer £ > 2. In this paper, we give a full characterization of T¥, when it is a divisor
graph with positive integer k£ greater than four.

Keywords: Tree; divisor graph; power of a graph.

1. INTRODUCTION

Throughout this paper a graph G means a finite simple graph, i.e. a graph without loops or
multiple edges. A tree 7 is a connected graph that has no cycles. The distance between any two
vertices x and y, is the length of a shortest path between them, denoted by d(x, y). In a tree T,
the path between two vertices is unique, hence the distance between two vertices is the number
of edges in this path. An r-starlike tree 7 is represented by subdividing all edges of a star graph
into paths (known by legs), where r is the number of legs. The diameter of a graph G, denoted
by d or diam(G), is equal to sup{d(x, y). x, y € V(G)}. The neighbour of a vertex u, denoted by
N(u), is the set of all vertices that are adjacent to u, then |N(u)| = deg(u). A leaf vertex (end
vertex), is a vertex u for which deg(u)= 1. The power graph G* has the vertex set V(G) and two
vertices x and y are adjacent if and only if d(x, y) < k. For an oriented digraph D, a transmitter
is a vertex having indegree 0, a receiver is a vertex having outdegree 0, while a vertex v is a
transitive vertex if it has both positive outdegree and positive indegree such that (u,w) € E(D)
whenever (u,v) and (vyw) € E(D). Whereas, if every vertex in a graph G is a transmitter, a
receiver, or a transitive vertex, then D is a divisor orientation of G and G is a divisor graph. For
an example, a complete graph and a bipartite graph (a tree is bipartite), see [6]. For undefined
notions and terminology, the reader is referred to [4].

In 1983 Erdds et. al. [7] and Pollington [8], studied the length, g(n), of a longest path in the
divisor graph whose divisor labeling has range {1, 2, ..., n}. Since 1983, several papers appear
about divisor graphs, such as [5] and [6]. A complete characterization of a divisor graph of
powers of paths, cycles, hypercubes, folded hypercubes and caterpillars, beside 7°, were given
in [1], [2] and [5]. Moreover, in 2015 AbuHijleh et. al. [3] gave a characterization of 7%, when
it is not a divisor graph for any positive integer k > 3, beside 7° and T7, if they were a divisor
graph. In this paper, we give a characterization of 7¥, when it is a divisor graph for any positive
integer k greater than four.

In the graph theory a divisor graphs also where studied under different names such as a
comparability graph, a transitively orientable graph, a partially orderable graph, and a
containment graph. Note that, every comparability graph is a perfect graph. A perfect graph is
a graph in which the chromatic number of every induced subgraph is equal to size of largest
clique of that subgraph. Whereas, perfect graphs are closely related to perfect channels in
communication theory. Also, a novel application of a perfect graph relates to an urban science
problem involving optimal routing of garbage trucks, see [9], and there are a lot of applications
one can find it, especially for a power graph that have a main aspect in networking field.

"Eman A. AbuHijleh’

*Characterizing when the powers of a tree, are divisor graphs

* Eman A. AbuHijleh
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2. PRELIMINARIES

The following results give different characterizations of divisor graphs.

Theorem 2.1. Let G be a graph, then G is a divisor graph if and only if G has a divisor
orientation, see [6].

Proposition 2.2. Every induced subgraph of a divisor graph is a divisor graph, see [6].

Theorem 2.3. For any integer k > 2, if G is a graph of diameter d > 2k+2, then G* is not a
divisor graph, see [5].

Theorem 2.4. Suppose that T is a tree with diam(T) > 2k —-2(1—1), I <] < {?J k>3 and

T contains an induced subgraph that is isomorphic to Ty.;, see Figure 1. Then T' is not a divisor
graph, see [3].

tm c1 -"’_’El—:i.c' bi_1+1

ak—| < b

oo ar g 1 b2 O..—/
Figure 1: Tk,

Theorem 2.5. Let T be a tree that is induced a 3-starlike tree T. with length of each leg is d.
2

, where diam(T,) = d.> 4 (even), then T%* is not a divisor graph, see [1] and [3].

P

e Cde 4
ad p (‘_‘12 ba
e e
— . a%:jn—L‘ ° e ._Z_.bhfl z

ai U p,

Figure 2:Te.

According to Theorem 2.4, we have a specific form of 7 so that 7'is not induced an isomorphic
subgraph of 7i;with odd positive integer k. The following definition gives a construction of an
arbitrary tree 7, so that 7%, is not induced in it.

Definition 2.6. First, construct a path, say P, with diam(P;) = diam(7). Then label the
consecutive vertices, after leaving A+1 vertices of P; from one side, as follows {x;, x2, ..., Xu:
m=d—-2h—-1h= E }. Hence, there were i + [ vertices in P, after x,,, in the other side.
2
Second, construct subtrees on each interior vertex, without changes the diameter of 7, and
with a specific distance of x;;, where each vertex has a specific name as given below.

Third, for each x;, consider the set of vertices S; = {x;, vi = ¢, o dxi,v)=h,i=1, .., m
and /= 1,..., number of vertices in the level 4;}. For any path P between v; and x; s.t. i #j, then

x; € P. Moreover, ati = I, m we have h; = 1, ..., h. Ati =2, m—I we have h; =1, ..., h—I and

continuing by this manner, to reach to the middle. Also, define the sets, in the level 4+1 of x;
xp,h+1,i

tobe, S1i={v,, = q, d(xs, v;; )=h+ land [j=1,..., number of leaves in the level & +1,

whereas foreachi =1, ..., deg(x;)—I, the path P; from v, , tox; passes through qf"l }. Similarly
define the sets, in the level & +1 of x,, to be S,,;, where i = 1, ..., deg(xn) —1.
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Fourth, if d = 2k + I, we find that Sy+/= {x5+;} and Sp+= {xs+2}. Atd = 2k or less, we delete
the set of vertices g _ and adjacent X, with x[ . Then rename the vertices in g to be
m miy L 2

2 2 2 2

, and similarly the successive sets till S,, see examples in Figure 3 and Figure 4.

h 3 1 levels

®e
L]
:>—'. e o -. F.A
L]
.:>._.‘. - . Xh  Xh4l Xhi2 Xm—1 m=k+1 "—{:
h+1 jevels h+1 levels

Figure 3: T with d = 2k+1.

3 \(Y// s .
L k | V_W.%.

By o 1] X1 Xm=k—2
h+1 |evels

Figure 4: T with d = 2k-2.

Similarly, by using Theorem 2.3 and Theorem 2.4, we have a specific form of 7, so that T is
not induced an isomorphic subgraph of T, or 7. with even positive integer k.

3. CHARACTERIZING WHEN POWERS OF A TREE 7% ARE DIVISOR
GRAPHS, FOR k = 2.

For k = 3, T° was characterized by AbuHijleh et. al. [3]. But if £ > 5 with odd positive integer
k, we give a characterization in the following theorem, which is a generalization of result at £
=3.

Theorem 3.1. Suppose that T is a tree with diam(T) <2k + I, k = 2h + 1 and k> 5. Then T is
a divisor graph if and only if T is not induced a subgraph that is isomorphic to Tk,

Proof. Assume that 7 is induced a subgraph that is isomorphic to 7%, Then, by Theorem 2.4,
T* is not a divisor graph.

Conversely, assume that 7" with diam(7) < 2k + 1, is not induced a subgraph that is
isomorphic to Ty, where /= 1,..., h. Then T will take a certain form, that is given in Definition
2.6. Otherwise, if you add an edge to any leaf (without changes the diameter), you will get an
induced subgraph that is isomorphic to 7%, see Figure 3 and Figure 4 as an examples.

Moreover, by using sets in Definition 2.6, there are three cases to consider w. r. to diameter
of T.

Case 1: For 2k—2 <dzam(T) <2k +1.

i=h

(US)U(US ) withj = deg(x;) — 1.

i=m

s=U S)U(U ,X,} withj = deg(xn) — 1.

i=h+1
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Note that: (a.)lLet Xr = xp+1. (b.) Let x; = xp42. (¢.) At d = 2k— 2 and k = 5, we have xp+1 = X,
so letx;= ¢ .

Case 2: For 2k — h <diam(T) <2k - 3.

g7

i=j
- 8,=8,US,,, where S, =(lJ S)UlJS.) with j = degix) — I, and

i=1 i=1
i=h

Se=CUJ 8)-tudwv)>kwithv € Si .

i=h i=m

- S,=5,US,, , where S, (U $)-S,, and S, (US)U(USW)

_‘ —‘ i=h+1

—{X,.X,}, with j = deg(x») —

Note that: (a.) Let x, = Xh+1 (b )YLetx; =xpio, for 2k—h+ 1 <d<2k-3.(c.) Atd =2k —h, we
have xj+; = xm, so let x, = . (d.) For k = 7, we have only one case is d = 2k — h = 2k — 3,
hence consider case (c.) for it. (e ) For k =5, we have d = 2k— h = 2k — 2 and that's in case 1.

Case 3: Fork + 2 <diam(T) <2k—h— 1.
- §,=5,US,,, where S, = U S)U(US“) with j = deg(x) — I, and

So=C1J 8)-(u:duv)>kwithv € Sips }U{x ).
i=[ﬂ+1

i=m i=j
- S, =8,US,, , where S, =( U S)—=(S,, U{x.,x.})and S,, :USW. , with j

i{%}-l i=l
= deg(xn) —
Note that, in this case m < . Hence x, =¢;"" and x, =¢;""""' , where x,€ N(x,) and d(x,, v) =
kwithv € S).

Let D be an orientation of 7%, where E(D) = A\UB\U C and 4, B, & C are defined as follows:
(1) For4 C E(D):
(i) Foru € Sy, then (u, x, ) € AC E(D).
(i) Foru, v € Sqand d(x,, u) > d(x,, v), then (u, v) € A C E(D).
(iii) Foru, v € Sy, d(x,, u) = d(x», v) and d(u, v) < k. Let (u, v) € 4 C E(D).
(iv) Foru, v € Sqandd(u,v) =k +1,thenu €S, andveES,, , where i; # i>. Then uv¢

E(T") and for any z € S different than u and v, we have two cases:
Ifd(u, z) <k and d(v, z) < k. Hence, d(x,, z) < d(x,, u) and d(x,, z) < d(x., v), then{(u,
z), vz)} C 4 C E(D).
Ifd(u, z) <kandd(v, z) = k+1.Hence,u, z €S, andveS,, , wherei; #i>. Then (u,
z) € A C E(D)andzve E(T").
(2) ForB & E(D):
(i) For v € Sp, then (x,, v) € BC E(D).
(11) Foru, v € Spand d( x u) < d(x

2] 5]

v), then (u,v) € B C E(D).
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(iii) Foru, v € Sp, d(x . 1) =d(x

3] 3]
(iv) Foru, v € Spand d(u, v) =k + I, thenu €S, , andv €S, , where i; # i>. Then uv

¢ E(T" ) and for any z € S different than u and v, we have two cases:
a. If d(uz) <kand d(v,z) <k.Hence d(x .z) < d(meJ,u) and a’(xvJ {mJ
2 2 2 2

3]
,v), then {(z, u), (z,v)} CBCE(D,).
b. Ifd(u, z) <kand d(v,z) =k+1.Henceu,z €S, , andv €S, , , wherei; #i>. Then

(u,z) € B C E(D)andzvg E(TY).
(3) For C C ED):
(1) (x;, x) € C C ED).
(i) Foru € Szand d(x,, u) <k, then (u, x,) € C C E(D).
(iii) Foru € S, and d(x, u) <k, then (x, u) € C C E(D).
(iv) Foru € S4, v € Spandd(u, v) <k,then (v, u) € C C E(D).

,v)andd(u, v) <k. Let (u,v)e B C E(D).

,z) <d(x

It is enough to show that every vertex of D is a transmitter, a receiver, or a transitive vertex.

(1) For diam(7) = 2k + 1, we have x, is a receiver. Also we have a set of receivers, say S,
where for each S,,; with i = 1, ..., deg(x,) —I, Sy is induced a clique in 7* and we have
only one receiver in each set of S, ;, hence |S,| = deg(x,,) — . But for diam(7) < 2k, we have
only one receiver is x and S, = ¢.

(2) For a transmitter vertex we have x,. Also we have a set of transmitter, say S;, where for
each S;; with i = 1, ..., deg(x;) —I, S;; is induces a clique in 7* and we have only one
transmitter in each set of S;,, hence |S; | = deg(x;) — 1.

(3) For a transitive vertex, we have three cases to consider:

(1) Letu, v, z €S4—Srand {(u, v), (v, z)} CTACE(D). Then d(u, x,) > d(v, x,) >d(z, x,),
which implies that d(u,z) <kand (4, z) € A C E(D).
(ii) Letu, v, z €Sp— S and {(u, v), (v, 2} CBC E(D). Thend(u, x, ) <dm, x )<
3 3

d(z, x, .

5]

(iii) Letu, v €Sy—Siandw, z € Sp— S
If(z,u) € C C E(D)and (u,v) € A C E(D), thend(u, x,) >d(v, x,). Which implies
dv,z) <d(u,z) <k, hence (z, v/ € C C E(D).

If(z,w) € BC E(D)and (w,u) € C C E(D),thend(z, x

ki

), which implies that d(u,z) <k and (u, z) € B C E(D).

) Sd(w, x

ki

). Which

implies d(u, z) <d(u, w) <k, hence (z, uy) € C C E(D).
A B

/’QV/’\

Figure 7: The sketch of the direction in D.

The sketch of the direction in D is represented in Figure 7. Thus, D is a divisor orientation
of T*. Hence by Theorem 2.1, T* is a divisor graph for k+2 < diam(T) < 2k +1. For T with
diam(7) < k+1, T is an induced subgraph of 7% with diam(7) = k+2. So that, by above work
and Proposition 2.2, 7" is a divisor graph.[]

For k = 2, 4, T* was characterized by AbuHijleh et. al. in [1] and [3], respectively. But if k > 6

with even positive integer &, then the following theorem characterizes it, where it is a
generalization of result at £k = 2, 4.

242



Theorem 3.2. Suppose that T is a tree with diam(T) < 2k + 1, k = 2h and k >6. Then T is a
divisor graph if and only if T has no induced subgraph that is isomorphic to Ty, or a subgraph
that is isomorphic to T..

Note that, the proof of Theorem 3.2 is like one in Theorem 3.1 with minor differences. Finally,
by Theorem 3.1, Theorem 3.2 and results in AbuHijleh [1] and [3], we give a full
characterization, for when T* is a divisor graph with positive integer k > 2.
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